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1 MOTIVATION

An important aspect of optimising public transport is finding a good timetable. Often a periodic
timetable is desirable, i.e. a timetable which repeats in a regular pattern (e.g. every hour). On the
one hand, short travelling times are important from the passengers’ point of view. The problem
of finding a periodic timetable with minimal travelling times is known as the Periodic Event
Scheduling Problem (PESP) and is well researched, see e.g. Liebchen (2006). On the other hand,
tight timetables without buffer times are prone to delays, which are inevitable in practice and
highly dissatisfactory for the passengers. Hence, a good timetable should also have some degree
of delay resistance. Many concepts and ideas on how to increase the robustness of a timetable
against delays exist, see e.g. Lusby et al. (2018). However, none of these approaches uses the
promising concept of recoverable robustness introduced by Liebchen et al. (2009), although the
literature on delay management is dedicated to recovering timetables.
In our work we combine timetabling and delay management to be able to find recoverable robust
timetables. We develop a mixed integer programming formulation for the Recoverable Robust
Periodic Timetabling Problem (RRPT). Furthermore, we identify similarities and differences to
strictly robust timetables and analyse the relation between the nominal travelling time and the
delays. We also tackle the challenge of finding heuristic solutions.

2 PROBLEM DESCRIPTION

We are given a scenario set U , where every scenario r ∈ U is a set of source delays. A timetable π
is called (α, β)-recoverable-robust w.r.t. U if for every r ∈ U there is a disposition timetable such
that the total delay and the number of missed transfers (both weighted with the number of
passengers) are bounded by α respectively β. The Recoverable Robust Periodic Timetabling
Problem is the problem of finding a periodic timetable which is (α, β)-recoverable-robust and
minimises the nominal travelling time summed over all passengers.

We briefly describe the PESP, which is a common model for periodic timetabling. In the PESP we
are given a period T together with a set of events E . Each event corresponds to the arrival or the
departure of a traffic line at some station. Furthermore, we have activities A = Atrain ∪ Atransfer
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Figure 1 – Problem of rolling out a periodic EAN without knowing the timetable

which represent driving and waiting of trains (between and in stations) and transfers of pas-
sengers. We obtain an event-activity-network (EAN) N = (E ,A). Every activity has a lower
bound La and an upper bound Ua for its duration. Additionally, wa is the number of passengers
using activity a ∈ A and wi is the number of passengers arriving at their destination i ∈ E . A
timetable with period T assigns a time πi ∈ {0, . . . , T − 1} to every event. Events are repeated
every T minutes. The objective is to minimise the total travelling time.

In practice, delays may occur and make a timetable infeasible. A set of source delays is called
a scenario. The Delay Management problem (DM) consists of two tasks: finding a disposition
timetable, i.e. a new timetable which respects the source delays, and deciding which transfers
should be maintained and which can be cancelled. See Dollevoet et al. (2018) for a survey. As
delays do usually not occur periodically, DM is not considered in the periodic EAN, but in a
aperiodic (non-periodic) network. Here, an event does not represent the arrival or departure of
a line (which repeats every T minutes), but of a single trip. DM usually has a timetable as
input. This timetable is used to roll out the periodic EAN N = (E ,A) to the aperiodic network
N = (E ,A) for some given planning horizon I = [tmin, tmax]. If K is the number of periods in
I, every periodic event i ∈ E has K corresponding aperiodic events i1, . . . , iK in the planning
horizon to which we add b := dmaxa∈A Ua/Te further events to make sure that also the arcs leaving
I can be considered. The set of activities A depends on the timetable, as can be seen in the
small example in Figure 1.
The goal of our paper is to integrate PESP and DM. PESP is a periodic problem in the EAN,
while Delay Management uses the aperiodic network N . For the integrated problem we have to
use the same network. We decided to use the aperiodic network N . Finding a periodic timetable
in an appropriately rolled out aperiodic network is called Periodic Timetabling in Aperiodic
Network (PTTA) and was introduced in Grafe & Schöbel (2021), where it was also shown to
be equivalent to PESP. It requires solving an assignment problem to choose activities for the
timetable (in Figure 1(d) one of the two dashed activities has to be chosen).

3 MODELLING

We develop a mixed integer programming formulation. The objective function minimises the
nominal travelling time summed over all passengers. The constraints can be divided into two
subproblems as indicated by the boxes. For the master problem PTTA of finding a periodic
timetable in the aperiodic network N (see Grafe & Schöbel (2021)) we need timetabling vari-
ables πi for i ∈ E and assignment variables ua for a ∈ A. (1) and (2) ensure that the chosen
activities respect the upper and lower bounds. The synchronisation constraints (3) enforce peri-
odicity. The assignment problem is included by (4). The auxiliary variables Fa determinie the
travel time needed in the objective function, see (5). Note that due to the periodicity of the
timetable it suffices to have these variables only for one period, i.e. we only define them for arcs
of the form a = (i1, jt). (6) and (7) ensure that the timetable is indeed within the planning hori-
zon. We have to solve the delay management problem in every scenario. As in Schöbel (2007),
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min
∑

a=(i1,jt)∈A

waFa ·K (RRPT(U , α, β))

πj − πi +M(ua − 1) ≤ Ua a = (i, j) ∈ A (1)
πj − πi +M(1− ua) ≥ La a = (i, j) ∈ A (2)
πis − πis−1 = T is ∈ E , 2 ≤ s ≤ K + b (3)∑
t:a′=(is,jt)∈A

ua′ = 1 a = (i, j) ∈ A, 1 ≤ s ≤ K (4)

Fa ≥M(ua − 1) + πjt − πi1 a = (i1, jt) ∈ A (5)
πi ≥ tmin i ∈ E (6)
πi1 ≤ tmin + T − 1 i ∈ E (7)
πi ∈ N i ∈ E (8)
ua ∈ {0, 1} a ∈ A (9)
Fa ≥ 0 a = (i1, jt) ∈ A (10)

P
T
T
A

xri ≥ πi + dri i ∈ E , r ∈ U (11)
M ′(1− ua) + xrj − xri ≥ La + dra a = (i, j) ∈ Atrain, r ∈ U (12)

M ′(1− ua) +M ′yra + xrj − xri ≥ La a = (i, j) ∈ Atransfer, r ∈ U (13)∑
a∈Atransfer

way
r
a ≤ β r ∈ U (14)

∑
is∈E:s≤K

wis(x
r
is − πis) +

∑
a∈Aout

waH
r
a ≤ α r ∈ U (15)

Hr
a ≥M ′′(ua − 1) + xrj − πj a ∈ Aout, r ∈ U (16)

xri ∈ N i ∈ E , r ∈ U (17)
yra ∈ {0, 1} a ∈ Atransfer, r ∈ U (18)
Hr

a ≥ 0 a ∈ Aout, r ∈ U (19)

D
M

in the DM subproblem, for every r ∈ U we need variables xri determining the time of event i ∈ E
in the disposition timetable and binary variables yra for every transfer activity a, determining if
the transfer is maintained. An event can not take place earlier than in the original timetable
π (plus some possible source delay), as enforced by (11). For the driving and waiting activities
Atrain as well as for the maintained transfer activities Atransfer the disposition timetables have
to fulfil the lower bound (plus source delay), which is ensured by (12) and (13). The total delay
over all passengers and the number of missed transfers are bounded by α respectively β in (15)
and (14). (16) give special attention to arcs leaving the planning horizon. Note that nearly all
constraints of (DM) are coupling constraints and that we use different sizes of big-M -constraints.

4 ANALYSIS AND OUTLOOK

For the concept of strict robustness it is known that a robust feasible solution remains robust
feasible if the uncertainty set is extended to its convex hull (Ben-Tal et al., 2009). Unfortunately,
for recoverable robustness this is not true in general as demonstrated in Carrizosa et al. (2017).
However, we can show this property for a special case:
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Lemma 1. If π is (α, 0)-recoverable-robust w.r.t. U , then it is also (α, 0)-recoverable-robust w.r.t.
conv(U), if the integrality constraint on x is relaxed.

Proof. Since π is (α, 0)-recoverable-robust w.r.t. U , for every r ∈ U there is a DM-solution
(xr, 0) with delay bounded by α. In particular, we have xrj − xri ≥ La + dra for all a = (i, j) ∈
Atrain ∪ Atransfer. Let r̄ ∈ conv(U), i.e. all source delays are of the form dr̄a =

∑
r∈U λrd

r
a for

a ∈ Atrain resp. dr̄i =
∑

r∈U λrd
r
i for i ∈ E . For every i ∈ E define xr̄i :=

∑
r∈U λrx

r
i and set

yr̄a = 0 for all a ∈ Atransfer. It follows for a = (i, j) ∈ A:

xr̄j − xr̄i =
∑
r∈U

λr(x
r
j − xri ) ≥

∑
r∈U

λr(La + dra) =
∑
r∈U

λrLa +
∑
r∈U

λrd
r
a = La + dr̄a (20)

Analogously, we obtain xr̄i ≥ πi + dr̄i for i ∈ E . The total delay is∑
i∈E

wi(x
r̄
i − πi) +

∑
a=(i,j)∈Aout

wa(xr̄j − πj)

=
∑
r∈U

λr (
∑
i∈E

wi(x
r
i − πi) +

∑
a=(i,j)∈Aout

wa(xrj − πj))︸ ︷︷ ︸
=Zr

≤ max
r∈U

Zr ≤ α (21)

In particular, we show that for integral input data and β = 0 it suffices to solve RRPT only
for the extreme points of the scenario set, i.e. if we require that all transfers are maintained, we
can reduce our problem size considerably. We further analyse the relation between α, β and the
objective function value: Requiring only few delay leads to bad nominal travelling times.

The integer program is too large to be solved by a solver even for small instances. However,
timetabling and DM can be tackled, which is the basis of iterative and decomposition approaches.
We develop an iterative heuristic which is tested on close-to real world examples from the LinTim
library (Schiewe et al., 2021).
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