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Logistics service providers (LSPs) utilize transportation assets such as car wagons and containers
to satisfy customer demand. Servicing such demand requires that assets of appropriate capacity
should be utilized for the transportation operation. The amount of time required for transportation
operations can be affected by network disruptions and is therefore stochastic. This gives Tise to a
generalized newsvendor problem, where the LSP decides how many assets to acquire and how to
schedule them so that stochastic demand requests that require specific capacity but uncertain time
are fulfilled. Excess demand can be satisfied by utilizing spot assets, which, however, come at a
higher cost. We apply this framework to an LSP who leases train wagons on an annual basis and
responds to demand fluctuations via ad-hoc spot train rentals and formulate this problem as a two-
stage stochastic program. Structural properties of the formulation and a column generation-based
procedure greatly reduce the search space of optimal solutions. Computational results illustrate
the efficiency of our approach.
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1 INTRODUCTION

Logistic service providers (LSPs) offer door-to-door transportation services to companies span-
ning across multiple industries. In order to carry out such services with high operational effi-
ciency, their capability to respond to fluctuating customer demand is of paramount importance.
Timely access to transportation infrastructure, such as train wagons and containers, requires
the deployment of assets provisioned well in advance, so that resorting to reactive, last-minute
alternatives is kept to a minimum.

Consider, for instance, a provider of rail transportation services, who may commit to the
acquisition of a certain number of train wagons on an annual basis, either by entering in long-
term leasing agreements or by purchasing the wagons herself. If her customers’ demand exhibit
strong seasonal fluctuations and she needs additional wagons to cover it, she will have to use
spot wagons, which are often priced at a premium. Therefore, committing to a small number
of wagons for long-term usage exposes her to demand variability, leading to last-minute orders
and recurrent, one-off costs. Committing upfront, however, to an unnecessarily large number of
wagons can lead to significant fixed costs, affect liquidity, and ultimately the prosperity of her
operations. Such a position can lead to financial distress, especially if anticipated demand is not
realized.

Although such decisions have additional complexities, in the case of transportation assets
there is one aspect that makes them particularly challenging: customer demand is in the form
of transportation services, while supply for those services is in the form of asset acquisitions.
Moreover, requests for transportation services have two dimensions of uncertainty: the number
of requests per customer, and the time spent for each request, which is the round-trip duration
to the customer and the time spend in her premises to carry out the service. Translating such
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service requests to strategic asset acquisition decisions is challenging, and depends critically on
the efficiency of the underlying operations. The literature has considered this problem in several
specific settings (Yamada et al., 2009, Nourinejad & Roorda, 2017, Noori-daryan et al., 2017,
Meng et al., 2014), but, to the best of our knowledge, our work is the first one to provide a

unifying, stylized framework that captures this trade-off.

In this work, we formulate this problem as a two-stage, multi-period stochastic mixed-integer
program and solve it using column generation and a customized algorithm. We provide compu-

tational results that demonstrate the efficiency of our approach.

2 METHODOLOGY

We use the following notation for our model.

Sets.

C ={1,...,|C|}, Customers, indexed by c.

T ={1,...,|T|}, Time periods, indexed by t.

N ={1,...,|N|}, Assets, indexed by n.

S ={1,...,]5|}, Scenarios, indexed by s.

Parameters.

0, Maximum duration an asset can be in service per time period.
Octs,  Service request demand of customer c¢ in time period ¢

under scenario s (number of trips required)

Tets, ~ Duration an asset is deployed to perform one service request of customer c
in time period ¢ under scenario s

ki, Number of spot assets available during time period t at the spot market.

Dis; Probability that in time period ¢ scenario s realizes.

A, Regular asset acquisition cost.

r, Spot asset acquisition cost.

Decision variables.

w, Number of assets acquired at the beginning of the planning horizon (regular assets).
Gts» Number of additional assets rented from the spot market,

during time period ¢ under scenario s (spot assets).

Ynts) =1, if asset n is utilized in time period ¢ under scenario s, 0 otherwise

Acnts, Number of service requests of customer c satisfied by asset n,

during time period ¢ under scenario s.

Using the sets, parameters and variables, the Strategic Model (SM) is defined as follows.

min Aw + r Z Zptsgts

teT ses
st w+ Cts > Z Ynts, VieT, Vs € S
neN
Z Acnts = Octs, Yee CO\VteT, Vse S
neN
Z TctsAcnts < PYnts; Vn € N, YVt € T, Vse S
ceC
0 < (s < ki;  Gis integer VteT, Vse S
Ynts € {0, 1}, VneN, VteT, Vse S
Acnts > 0;  Agpes integer YVeeC,Vne N, VteT, Vse S

w > 0; w integer

()
(6)
(7)
(8)

The objective function minimizes the total expected cost, which consists of the cost of the regular
assets and the expected cost of spot assets. Constraints (2) state that the assets required should
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be lower than or equal to the total number of available assets, spot and regular, for every time
period and scenario. Constraints (3) show that service requests from customer ¢, 6.5, must be
satisfied by asset deployments in a scenario/ time period combination. Constraints (4) pose that
the total time an asset is in use during a time period under a scenario should be no higher than
its available operating time in every scenario/ time period combination. Finally, Constraints
(5)-(8) show the bounding and integrality restrictions of the decision variables.

A key property of (1)-(8) is that the variables that are in the objective function appear only
in constraints (2), lower bounded by >, - ¥nts, the number of required assets in each period
and scenario. Therefore, a simpler version of the SM model (1)-(8) can be formulated assuming
that the number of required assets in each time period and scenario, d:s, is given exogenously.
We use d to denote the vector of d;s. Then, model (9)-(12) describes this reformulation.

z(6) =min Aw+T Z ZPtsCts (9)

teT seS
s.t. w+ Gs > Ogs, VieT, Vse S (10)
w >0, w integer (11)
Ces € {0,1,. .., ke }, VtieT, Vse S (12)

Here, the objective, (9), is identical to the original objective, and constraints (10) state that
there need to be at least as many assets available in each time period/scenario combination as
there is demand for. For model (9)-(12), we can formally prove the following result, which we
state hereby as a remark.

Remark 2.1 Define
#s = min { D s 1 (3) = (4); (6) — (7)} (13)

nenN
o [fos =0f forallt € T,s €S, (9)-(12) and (1)-(8) have the same optimal objective value.

o Ifds > 0f, for allt € T,s € S, then the optimal objective value of (9)-(12) is an upper
bound to the optimal objective of (1)-(8).

o [f 015 < Of, forallt € T,s € S with at least one inequality strict, then the optimal objective
value of (9)-(12) is a lower bound to the objective solution of (1)-(8).

Remark 2.1 can be used to devise an algorithm to solve (1)-(8): calculate df; by solving (13)
for each t, s, and then use them to solve (9)-(12). The former step can be done efficiently with a
column generation algorithm, because (13) has a cutting-stock problem structure. In the original
cutting-stock problem, the goal is to cut paper rolls in a number of pieces of a certain length (not
necessary identical lengths) while minimizing the total number of paper rolls that are needed. In
our setting, the problem is to select schedules defining the number of service requests an asset
will satisfy of different customers during time period ¢ € T under scenario s € S, i.e. a cutting
pattern represents the allocation of an asset to customers. The set of all possible asset schedules
is denoted by (. Then, the service requests satiated by an asset to customer ¢ € C' in asset
schedule ¢ € @ is signified by v4.. We drop the indexes ¢ and s for brevity and define the integer
variable A;, which represents the number of assets following schedule ¢g. Then, subproblem (13)
can be formulated as follows.

min Z Ag (14)

q€Q

s.t. Z AgUqc = O, Vee C (15)
q€eqQ
Ag>0; N EZ Yq € Q (16)
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We then state a proposition that shows how using the knowledge of d;s we can calculate w
and (.

Proposition 2.1 Model (9)-(12) is conver and piecewise linear in w. Further, let wpmi, =
maxier{maxses{dis} — ki} and P = {(t,8) : 0ts > wmin}. Then, the optimal number of reg-

ular assets w* is in the set O = {wmin} U {0, Y(t,s) € P} and the optimal number of spot
assets follows from (f; = max(0, o5 — w™).

3 RESULTS

In our algorithm, we use column generation to solve (13) and then a simple line search across
all feasible ¢;, to find the optimal w, as implied by Proposition 2.1. To test our approach, we
have generated instances with varying periods (|7 € {26,62}), customers (|C| € {2,4,8,16}),
scenarios |S| € {5,10,20,50} and capacity tightness (Zc%tem € {0.6,1}). The combination of
parameters leads to 192 instances, which were classified to small, medium and large according to

Gap (%) CPU (s) No solution

Problem size Instances CPLEX CG CPLEX CG CPLEX CG
Small 54 0 0 1.23 15.86 0 0
Medium 90 1.26 0.03 3,978 255 7 0
Large 48 7.11 0.01 7,200 (TL) 1,728 35 0

Table 1 — Awverage values over the Small, Medium, and Large instances for CPLEX and our custom
algorithm (CG). TL denotes time limit.

4 DISCUSSION

We study the strategic planning of transportation assets, a problem faced by LSPs, emphasizing
that demand for services is expressed in the form of service requests and time during which the
servicing asset is occupied. Our formulation captures the core elements of this problem, and as
such it can be extended to more specific situations. We utilize a decomposition scheme where
each subproblem, formulated as a cutting-stock problem, is solved by column generation and
their solutions are utilized in a reduced reformulation of the original problem, which we can
solve in polynomial time by exploiting its structure.
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