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1 INTRODUCTION

In 2011, Uber first launched its ride-hailing service in San Francisco. The rise of Uber paved the
way for more and more platforms (i.e. Didi Chuxing and Lyft) to provide ride-hailing services
all around the world, reshaping transportation systems in both urban and suburban areas. The
essential role of these platforms is ’service providers’ to offer value-added services for both demand
(i.e., travelers) and supply (i.e., drivers). Ride-hailing platforms are a typical two-sided market,
so making matching proposals (Nourinejad & Ramezani, 2016) and setting pricing strategies
(Nourinejad & Ramezani, 2020) are two critical components to connect demand and supply
sides. In the context of order matching, much work (Zhan et al., 2016, Xu et al., 2018) has been
conducted recently assuming that all the drivers working in platforms are full-time employees and
service (accept) the dispatched orders unconditionally. After the matching process, the platform
charges a fare to travelers and pays a wage to drivers by withholding the commission, which is
normally between 15% and 30%, depending on the time, region, and company.

On the supply side in ride-sourcing platforms, drivers make working decisions (i.e. when and
where to service) and have heterogeneous market-behavioural patterns (i.e. being full-time or
part-time) based on their income, waiting time, etc. Also, travel purpose, the value of time,
spatial location, and other factors result in the heterogeneity of the trip demand. Taking into
account the heterogeneity in the matching process, the platform can not ensure that a driver will
accept a dispatched trip order. To mitigate the uncertainty in one-to-one matching, we consider
a relaxed matching pattern that offering each driver a menu of trip orders to choose from. A key
issue then is to determine which orders should be listed in the menu of each driver. Such menus
are needed to be designed carefully to nudge the self-optimizing drivers’ behaviours toward a
desirable collective outcome.

In this paper, the above problem is solved by combining modeling driver’s choice and design-
ing order menus: i) we investigate the drivers’ choice behaviour and model the probability of
choosing an order or ignoring the whole order menu. ii) We model the problem as many-to-many
matching and develop an algorithm to design order menus. Through numerical experiments on
the simulator based on the Manhattan road network, the proposed method could improve the
platforms’ efficiency and enhance drivers’ and travelers’ experience.
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2 Methodology

2.1 Modeling driver’s choice

Let D = {d1, d2, ..., dn} denote a set of drivers and O = {o1, o2, ..., om} be a set of trip orders.
For an arbitrary pair with a driver d ∈ D and an order o ∈ O, a utility function is defined as
ud,o.

ud,o = β0,d + β1,d · fo − β2,d · τ(lorg
o , ld) + β3,d · V (ldest

o ) (1)

where fo represents o’s fare (priced based on the travel distance and travel time), τ(lorg
o , ld)

indicates the pick-up distance from driver’s location, ld, to order o’s origin, lorg
o . V (·) is the

spatial-value function derived from demand statistics; higher V (·) indicates the place have a
higher probability of being matched to the subsequent passenger. There are three main factors
considered in the function: (i) order fare, an order with a higher fare will naturally attract
the driver (i.e. less probability of decline by the driver). (ii) Pickup distance, a longer pickup
distance undermines the driver’s willingness to choose an order. (iii) Order destination, an order
whose destination is a passenger-hotspot region will be more probable to be selected.

Given an order menu Od and ’Decline’ option c for driver d, the probability of option o,∀o ∈
Od ∪ {c} is chosen by driver d:

pd,o =
eud,o

eud,c +
∑

o′∈Od
e
u
d,o

′ (2)

where ud,c is a constant (i.e. the expected profit for serving an order) to represent the reserved
expectation of driver d by declining the current order menu Od and wait for the next instance of
matching.

2.2 Designing menus

Suppose unserved orders O and idle drivers D are collected at each matching instance. Let xd,o
be a binary decision variable that equals 1 if order o,∀o ∈ O is listed in the order menus of driver
d,∀d ∈ D, and 0 if not. The probability Po of order o selected by at least one driver is:

Po = 1−
∏
d∈D

[1− pd,o({xd,o′ |∀o
′ ∈ O}) · xd,o] (3)

where pd,o({xd,o′ |∀o
′ ∈ O}) (abbreviated as pd,o in the sequel) is the choosing probability that d

chooses o if the menu of d is known as {xd,o′ |∀o
′ ∈ O}, and

∏
d∈D[1− pd,o({xd,o′ |∀o

′ ∈ O}) ·xd,o]
represents the probability that none of the drivers choose order o.

In this paper, the objective is maximizing the sum of Po over all orders in O so as to maximize
the number of orders being responded:

max
∑
o∈O

Po = max
∑
o∈O

[1−
∏
d∈D

(1− pd,oxd,o)] (4)

To achieve the above goal, we abstract idle drivers d,∀d ∈ D and unserved orders o,∀o ∈ O
as two sets of vertices, and all valid pairs (if xd,o = 1,∀o ∈ O,∀d ∈ D) as the set of edges with
a weight ud,o. After that, the optimization problem can be transformed into determining the
optimal edge configuration in the bipartite graph. Given a fully-connected graph X = {xd,o =
1|∀o ∈ O,∀d ∈ D}, we introduce an iterative edge cutting algorithms to achieve the best edge
configuration in the bipartite graph.

Once we cut off the edge between o and d and remove o from driver d’s orders menus, the
choosing probabilities of choosing remaining existing orders o

′ , o′ ∈ Od are updated. We can
define δd,o′ to capture the change of pd,o′ :
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δd,o′ = pupdate
d,o′

− pd,o′ ;∀o
′ ∈ Od/{o} (5)

where pupdate
d,o′

is a probability that driver d chooses o
′ in the new graph (xd,o = 0).

Furthermore, δd,o′ leads to a change of Po′ :

Pupdate
o′

− Po′ = δd,o′ ·
∏

d′∈D/{d}

(1− pd′ ,o′xd′ ,o′ );∀o
′ ∈ Od/{o} (6)

where Pupdate
o′

indicates the updated value of Po′ in the new graph (xd,o = 0).
On the other hand, Po also changes after cutting off the edge between o and d:

Pupdate
o − Po = −pd,o ·

∏
d′∈D/{d}

(1− pd′ ,oxd′ ,o). (7)

Therefore, we can obtain the overall gain ∆ of the objective function:

∆ =
∑

o′∈Od/{o}

(Pupdate
o′

− Po′ ) + Pupdate
o − Po, (8)

positive ∆ indicates an improvement of our objective function.
To achieve the optimal edge configuration in the graph, the most straightforward way is to

compute ∆ for all the edges in the graph, and then cut off the ‘best’ edge (let xd∗,o∗ = 0) with
the maximal gain ∆max for the next iteration. The above process will be repeated until there is
no edge with a positive ∆. We call the method Edge Cutting algorithm (see Algorithm 1).

Algorithm 1 Edge Cutting
Input: Unserved orders O, idle drivers D
Output: Order menus X∗

Initialize a graph X = {xd,o = 1|∀o ∈ O,∀d ∈ D}
Find out the ‘best’ edge xd∗,o∗ with the maximal ∆max

while ∆max > 0 do
Cut off the edge between o∗ and d∗ (let xd∗,o∗ = 0)
Update pd,o, ∀o ∈ O,∀d ∈ D in the graph
Find out the ‘best’ edge xd∗,o∗ with the maximal ∆max

end while
X∗ ← X
return X∗

3 Experiment

In this section, we examine the performance of the proposed method. All the experiments are
conducted in a simulation environment in which Manhattan island is considered. The demand
data used are Manhattan taxi datasets in December 2020 collected from Yellow Cab’s website1.
The trip order data include order location (origin and destination) and order request time. Each
passenger is assigned a matching patience time stochastically drawn from a truncated Gaussian
distribution in the range of 0.5 [min] to 1 [min] with a mean of 0.75 [min] and standard deviation
of 0.15 [min]. An order will be canceled if not being matched or picked up within the matching
patience time. 300 drivers are initially generated in the road network at 07:00 AM randomly. The
number and location of new arriving drivers are considered to be stochastic and time-varying.

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Furthermore, drivers are assumed to be impatient; they will leave the network once they receive
no matching for 30 [min]. On the other hand, the platform kick out the drivers if they take more
than 10 [min] to choose a ride.

Every ten seconds, the platform provides an order menu to each idle driver. Drivers choose a
ride among the offered order menu (with the option decline) based on the utility and logit model
(Eq. 1 and 2). Subsequently, the platform collects the drivers’ decisions and assigns the nearest
responded driver to each order. Note that Idle drivers are parked at the last drop-off location.

The performance of the following benchmark methods are evaluated: i) One-to-one: This
method is commonly employed in ‘Order Dispatching’ or ‘Ride Matching’ scenarios. ii) Global:
All orders are listed in the menus of idle drivers. iii) Local: An order is listed in the menu of
drivers whose pick-up distance is less than 2 kilometers.

Table 1 – The matching results under different strategies to design order menus.

Method
Avg. Avg. Avg. Avg.

Response Cancellation Response time [s] Occupied rate

One-to-one 4679.7 (63.6%) 2640.1 (35.9%) 13.1 47.2%
Global 3467.3 (47.1%) 3840.4 (52.2%) 17.7 43.4%
Local 5327.8 (72.5%) 1998.5 (27.2%) 12.4 51.3%
Edge Cutting 5767.3 (78.5%) 1563.4 (21.2%) 11.5 53.7%

Table 1 summarizes the outcomes of different methods implemented in the simulator. The
Global method leads to a worse platform efficiency due to the concentration of the drivers’ will-
ingness on several attractive orders (over-competition on a few high-utility orders). Contrarily,
the Local and Edge Cutting methods can achieve more promising results. It is worth noticing
that though the Edge Cutting algorithm is designed for optimizing average response in our prob-
lem, it achieves the best performance on all evaluation metrics with 78.5% average response rate,
21.2% average cancellation rate, 11.5 [s] average response time and 53.7% average occupied rate
of the vehicles.

4 Conclusion

Considering the heterogeneity of both supply and demand in the matching process, we propose a
method to design the trip order menus in peer-to-peer ride-hailing platforms. Through extensive
experiments, the proposed method enhance both passengers’ and drivers’ experience and improve
platform efficiency
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