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1 INTRODUCTION

Every day ride-sourcing services grow and promote new service options at the same time that
regulators try to identify and mitigate the negative externalities of these operations to the society
(Rayle et al., 2016).

Geographical variations on demand can create an unbalance between service demand and
driver supply. In this direction, keeping drivers well positioned is of vital importance to maintain
a satisfactory service quality. Most strategies in the literature are reactive in the sense that they
rely on past events such as losses of requests. However, if customers face recurrent losses, they
are likely to change to a mode that is always ready to serve them.

MFD-based models can describe the dynamics of state evolution in urban networks par-
titioned in a number of homogeneously congested regions to predict near future conditions.
Examples of its use include taxis and ride-hailing (solo rides) (Nourinejad & Ramezani, 2020).
Note that, the studies still lack the effects of ridesplitting on repositioning strategies and detailed
analysis on driver decision process. The reader is acknowledged that this does not configure a
systematic, nor comprehensive literature review, which will come in the final version of the paper.

Herein, we develop relocation strategies for ride-sourcing vehicles using a fare optimization
controller subject to a dynamic MFD-based model as Beojone & Geroliminis (2021), which also
provides drivers with an estimate for their earnings according to their repositioning decisions. The
fleet operator uses a continuous-time Markov chain to estimate earnings for a given decision. To
the best of our knowledge, this is the first attempt to integrate fare optimization and repositioning
in a scenario with ridesplitting.

2 MODEL DESCRIPTION

The model assumes that the TNC provides two service options that idle drivers can serve. The
first option, ride-hailing, aims customers that prefer to pay higher fares to ride alone. The
second one, ridesplitting, aims customers that accept some detour and longer travel times in
exchange for cheaper fares. Another important assumption is that ridesplitting is limited to
serve two passengers simultaneously per vehicle, which can comply with most of the current data
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on ridesplitting. Table 1 is derived from the list of activities. Pick-up and drop-off activities
were aggregated to form a single state. Vehicles in states RH and S2 are assumed completely
busy and cannot receive new assignments. At the same time, vehicles in states I and S1 are
considered available for new assignments (S1 only for ridesplitting assignments). For simplicity,
we assume that private vehicles actions besides driving (e.g. cruising for parking) are negligible.

Table 1 – List of states based on the activities vehicles perform.

Activity State Accumulation Activity State Accumulation
Idle I nI

o(t) Single ridesplitting S1 nS1
od (t)

Repositioning RP nRP
od (t) Shared ridesplitting S2 nS2

od (t)

Ride-hailing RH nRH
od (t) Private vehicle PV nPV

od (t)

To summarize the description states and activities of ride-sourcing and private vehicles, Figure
1A presents the state space with their respective transitions. The urban area is composed of a
set R = {1, 2} of regions. Mass conservation equations [1] keep track of the number of vehicles
in each state and their remaining distance to be traveled in an M-Model (Sirmatel et al., 2021).
The only exception is for idle ride-sourcing vehicles, which have no trips to complete. Instead,
they cruise waiting for the assignment of a new passenger (similarly to cruising for parking),
thus, there is no remaining distance, only the number of vehicles.
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Figure 1 – (A) Two-region state-space for ride-sourcing vehicles and private vehicles with their
schematic state transitions in the MFD-based model (system level model). (B) Ride-sourcing
driver state-space and transitions in the Markov chain model (individual level model).

ṅK
od(t) =IKod(t)−OK

od(t) (1a)

ṀK
od(t) =IKod(t)L

K
od(t)− nK

od(t)vo(t) (1b)

Where nK
od(t) and MK

od(t) are the number of drivers and the total remaining distance to be
travelled for drivers at an activity K at area o to area d, respectively. Furthermore, IKod(t) and
OK

od(t) represent the total inflows and outflows for these drivers, respectively. LK
od(t), in the other

hand, is their average trip length and vo(t) is the current average speed at that area.
Given the large frequency of events (passenger arrivals, deliveries, transfer flows) one can

approximate the revenue generation for the company by means of a continuous rate (instead of
a service by service basis). Furthermore, if the regions are reasonable uniform, we can assume
that drivers split earnings equally. Therefore, drivers’ earning generation depends on the activity
they are performing and booking and distance fares.

We assume that drivers try to maximize their earnings but they are unable to accurately
estimate earnings themselves (due to limited information and rationality). To help drivers,
the service provider uses a continuous-time Markov chain to depict near-future activities and
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earnings of individual drivers. Figure 1B depicts the transitions on the Markov chain. Note
that this Markov chain is depicted on an individual level, i.e., arrival rates, trip-completion and
transfer flows are individualized based on current information of the MFD model. Moreover, it
assumes that drivers will only make this decision the moment they are about to become idle,
therefore, there is no transition from idle to repositioning state because the probability making
this decision again in the near-future is negligible.

π̇K
od(t) = −ÕK

od(t)π
K
od(t) +

∑
k

Ĩkod(t)π
k
od(t) (2)

Where πK
od(t) is the instantaneous probability of a driver being in state Kod; and ÕK

od and∑
k Ĩ

k
odπ

k
od(t) are the individualized outflows and sum of inflows towards state Kod. The starting

solutions of the Markov chain represent drivers’ possible decisions, and their resulting proba-
bilities are used to estimate their earnings. Earnings from derive from bookings and traveling,
which are computed from to the number of new assignments and the production of busy drivers,
respectively. A logit model depicts drivers’ final decisions back into the MFD-model.

3 MODEL PREDICTIVE CONTROLLER

In this prototype application, we consider that the objective is to decrease the number of lost
ride requests for ride-sourcing services (called abandonments). Moreover, the responsible for
setting fares and supplying drivers with estimates on their near-future earnings is the service
provider, which can control booking and traveling fares independently within a bounded range
([fs

B,min, f
s
B,max] and [fs

T,min, f
s
T,max]). The design of the fare optimization problem of the ride-

sourcing service is formulated in Equation [3].

min
fs
B(t),fs

T (t)
J =

∫ tf

t0

∑
s∈S

∑
(o,d)∈R2

plsod (vo(t), n
s
av(t))λ

s
od(t) dt ns

av(t) =
∑

ks∈Ks

nks
od(t) (3a)

s.t.: Equation [1] t ∈ [t0, tf ] (3b)
fs
B,min ≤ f s

B(t) ≤ f s
B,max t ∈ [t0, tf ] and s ∈ S (3c)

fs
T,min ≤ fs

T (t) ≤ fs
T,max t ∈ [t0, tf ] and s ∈ S (3d)

v(t), nK
od(t), ... ≥ 0 t ∈ [t0, tf ] (3e)

In the objective function (Equation [3a]) the total number of lost passengers is described
using plsod(t) (probability of losing an arriving passenger), and λs

od(t) (passenger arrival rate for
a service s ∈ S = {H,S} – trisride-hailing or ridesplitting). Equation [3b] summarizes the mass
conservation equations of the MFD-model in Equation [1]. Equations [3c] and [3d] bound the
values for fares. Finally, Equation [3e] guarantees that the states of the model remain non-
negative. In this prototype implementation, we neglect the market effects on customers and
drivers decisions for joining or leaving the system. This is a direction for further research.

We prepared a rolling time horizon MPC controller. At each time step of 3 minutes, the
controller tries to minimize abandonments for the next 10 time-steps. The feedback loop provides
an estimation of system states. The optimization output is the set of fares. Fares affect indirectly
loss probabilities and outflows, therefore we solve the problem with a pattern search algorithm
at each step. We assume that the demand prediction module is based on historical data.

4 COMPUTATION RESULTS

The observation of abandonment rates shows how repositioning has potential to decrease the
number of lost requests. Fixing fares and allowing drivers to move between regions according to
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their expectations on revenues was capable to decrease the number of lost requests by more than
70%. Optimizing fares dynamically, brought abandonments to a near-zero situation, decreasing
by 98% compared to the non-repositioning scenario. However, the impacts of these decisions
on traffic are secondary to the problem as shown in Figure 2, where the optimization of fares
decreased the travelling speeds, in general. Furthermore, the greatest decreases in speed were in
the most congested periods of each region. We must point out that, in all cases, travelling speeds
remained above the critical speeds (13 km/h), i.e., the system never entered a hyper-congested
state (accounting for the background traffic as in Figure 1A).

0 1 2 3

Time (h)

0

0.5

1

1.5

A
ba

nd
on

m
en

ts
 (

pa
s/

h) 103

Ride-hailing

0 1 2 3

Time (h)

0

2

4

6

8
102

Ridesplitting

0 1 2 3

Time (h)

15

20

25

30

S
pe

ed
 (

km
/h

)

Region 1

0 1 2 3

Time (h)

10

15

20

25

30

Region 2

No-repositioning Fixed prices Optimized prices

Figure 2 – Comparison of realized abandonments and average travelling speed among three sce-
narios for (left) ride-hailing and (right) ridesplitting). Measurements extracted from the simula-
tion/plant results for each time-step of 3 minutes.

5 FINAL CONSIDERATIONS

In this paper we developed relocation strategies for ride-sourcing vehicles using a fare optimiza-
tion controller which also provides drivers with an estimate for their earnings for their reposition-
ing decisions. Our main results show that repositioning could brought passenger abandonments
to a near-zero scenario at the expense of decreasing travelling speeds, especially at the moments
of higher demand.

Such findings are expected in a problem with a single objective (minimize abandonments).
We must highlight that, in this case, the decrease in abandonments is a lot more pronounced than
the decrease in speeds, which did not enter a hyper-congested state. More evidence is needed
but these findings provide a likely path for testing the impacts of different regulatory strategies
under a transient situation. Nevertheless, this work contributes by expanding the test of fare
optimization to ride-sourcing services with the presence of ridesplitting option and providing
a powerful tool to estimate near-future earnings through a Markov chain, given the additional
options drivers and passengers have in these travel modes.
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