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1 RIDE-HAILING OPERATIONS

In ride-hailing systems, available vehicle time is one of the most important resources. Vehicle
time can be partitioned into four types of activities:

1. The time used to transport riders from their origins (pickup locations) to their destinations
(dropo� locations). This is the major utility (and revenue) generating activity of ride-
hailing systems. This time is called on-trip time.

2. The time used to reposition empty from one location to another location. In most trans-
portation systems, travel demand is not balanced over space over time scales of the order of
the duration of a trip. Imbalance in travel demand can be mitigated somewhat by pricing
incentives, but most imbalance in travel demand is accommodated either by repositioning
of vehicles without riders or by parking of vehicles. Under typical costs, repositioning of
vehicles is preferred over parking of vehicles, and therefore, although repositioning does not
generate revenue, it is an essential activity in the operation of most ride-hailing systems.

3. The time that elapses from the moment a vehicle is dispatched to pick up a rider until the
rider is picked up. This time is called en-route time. Typically, the farther a vehicle has
to travel from its location when it is dispatched to the rider's pickup location, the longer
the en-route time.

4. The time that a vehicle waits to be dispatched. This time is called idle time.

En-route time and idle time are both in some sense unproductive uses of vehicles' time, and
therefore one would like to minimize en-route time and idle time. A fundamental phenomenon in
ride-hailing systems is that there is a trade-o� between en-route time and idle time � if one of
these times is reduced, the other time increases. In short, if vehicles spend little time waiting idle
for a dispatch, then few vehicles are available when a rider makes a request, and thus the mean
distance between a rider and the closest available vehicle is long, which means that en-route time
is long. This trade-o� was pointed out by Arnott (1996), who showed for a stylized setting with
pickup locations and vehicles uniformly distributed over a space without boundaries that the
mean en-route distance is proportional to the inverse square root of the density of idle vehicles.
This phenomenon is of great importance in ride-hailing, because en-route time increases rapidly
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as the number of idle vehicles decreases, and every minute that a vehicle spends en-route is one
minute less that the vehicle can transport riders. In spite of this, much of the existing literature
on price optimization for ride-hailing Banerjee et al. (2016a,b), Bimpikis et al. (2019), and on
repositioning optimization for ride-hailing Braverman et al. (2019), ignores en-route time � it
is implicitly assumed that en-route time is zero whatever number of idle vehicles are available.
Exceptions include Castillo et al. (2017) and Xu et al. (2020), that consider the trade-o� in the
stylized setting with pickup locations and vehicles uniformly distributed over a space without
boundaries mentioned above.

2 A NEW MODEL OF RIDE-HAILING OPERATIONS

We consider a continuous time, in�nite horizon Markov decision process (MDP) model of a ride-
hailing system with average pro�t per unit time objective. Space is partitioned into zones. Each
ride request is associated with a pickup zone and a dropo� zone. Ride requests for each origin-
destination pair arrive according to a Poisson process. Instead of just considering the mean
en-route time for each zone, we consider the distribution of en-route time for each zone which
depends on the current number of idle vehicles in the zone. More speci�cally, for each zone we
choose a �nite number of en-route time classes. The probability that the en-route time of a ride
request belongs to class k depends on the current number of idle vehicles in the zone of the ride
request. Given that the en-route time of a ride request belongs to class k, the en-route time of the
ride request is exponentially distributed (because it is a continuous time MDP) with mean 1/νk.
Thus the distribution of en-route time for each zone is approximated by a mixture of exponential
distributions that depends on the current number of idle vehicles in the zone. The state of the
MDP includes information about the number of vehicles on-trip between each origin-destination
pair, the number of vehicles repositioning between each origin-destination pair, the number of
vehicles en-route in each pickup zone for each en-route time class, and the number of vehicles
idle in each zone. This gives a more accurate model than models that use only the mean en-route
time (and especially models that assume that en-route time is zero), and it also results in a more
tractable �uid optimization model than for models that use only the mean en-route time.

The decisions in our model include both origin-destination pricing decisions, as well as repo-
sitioning decisions. This is in contrast with previous work that considered pricing without repo-
sitioning Banerjee et al. (2016a,b), Castillo et al. (2017), Bimpikis et al. (2019), or repositioning
without pricing Braverman et al. (2019).

The MDP is intractable, partly due to the large state space. A widely used approach to
develop approximately optimal (and under appropriate conditions, asymptotically optimal) poli-
cies, is to formulate and solve a deterministic �uid optimization problem associated with the
MDP, and then to use an optimal solution of the deterministic �uid optimization problem to
compute a policy for the MDP. Such a deterministic �uid optimization problem is obtained by re-
placing all random variables by their means, and by allowing discrete variables to take fractional
values (hence the name �uid optimization problem). An issue is that even the deterministic �uid
optimization problem obtained in the usual way, is intractable for the MDP described above.
As mentioned above, instead of replacing the en-route time by its mean, we approximated the
distribution of the en-route time. We showed that the resulting stochastic �uid optimization
problem can be solved in polynomial time, by solving an associated conic optimization problem.

The solution of the stochastic �uid optimization problem can be used in various ways to
compute a policy for the MDP. A simple alternative is the following static (open loop) policy:
The optimal prices for the stochastic �uid optimization problem are used as static prices in the
MDP. The optimal repositioning �ows for the stochastic �uid optimization problem are used
to compute repositioning probabilities for the MDP. Another alternative is the following state-
dependent (closed loop) policy: The optimal prices for the stochastic �uid optimization problem
are used as static prices in the MDP. Periodically, the state of the MDP is used as input to a linear
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program that determines the optimal repositioning decisions to move the state to the optimal
state for the stochastic �uid optimization problem while satisfying �ow balance constraints.

We also consider an extension of the models described above that take the following into
account. In practice, vehicles can be (and many are) dispatched while repositioning. For example,
while a vehicle is repositioning from zone A to zone B, it may pass through zone C and be
dispatched to pickup a rider in zone C. In that case, it does not complete its planned repositioning
move. As far as we are aware, this is the �rst work that incorporates this important feature.

3 NUMERICAL RESULTS

A number of policies are compared in terms of long-run average pro�t per unit time and in
terms of their success in controlling the number of available vehicles. The static and state-
dependent policies described above are based on the stochastic �uid optimization problem FP1

that takes the dependence of the en-route time distribution on the number of idle vehicles into
account. To demonstrate the importance of repositioning, we also present results for a policy
based on a similar stochastic �uid optimization problem that takes the dependence of the en-
route time distribution on the number of idle vehicles into account, but without repositioning.
To demonstrate the importance of taking the dependence of the en-route time distribution on
the number of idle vehicles into account, we present results for a static policy based on a similar
�uid optimization problem FP2, that ignores en-route time, as is done in much of the existing
literature on pricing and repositioning for ride-hailing systems.

Figure 1 and Figure 2 present numerical results for three instances (di�erent instances have
di�erent origin-destination demand rates and di�erent origin-destination travel times) of a �ve-
zone city with 100 vehicles (20 in each zone at initialization). The instances are the same as those
used in Braverman et al. (2019). Each column of plots in the �gures corresponds to a speci�c
policy, while each row of plots corresponds to a speci�c instance. We generated 10 sample paths
for each combination of policy and instance. Each sample path consisted of 20,000 transitions of
the continuous-time Markov chain under the considered policy, with the �rst 10,000 transitions
discarded as transient (warm-up), and the second 10,000 transitions used for result collection.
Each black dot in the plots corresponds to one of these sample paths. The dashed lines in
Figure 1 show the average pro�t per unit time of the corresponding stochastic �uid optimization
problem, which is an upper bound on the long-run average pro�t per unit time of any policy
for the corresponding MDP. The dashed lines in Figure 2 show the optimal number of available
vehicles in each zone according to the corresponding stochastic �uid optimization problem.

Figure 1 shows that: (1) Without repositioning, the objective values are low; even the up-
per bounds on the objective values are low. (2) The static repositioning policy that takes the
dependence of the en-route time distribution on the number of idle vehicles into account per-
forms well, and the simulated revenues are quite close to the upper bounds given by FP1. (3)
The state-dependent repositioning policy performs slightly better than the static repositioning
policy, and the corresponding simulated revenues are even closer to the upper bounds. (4) The
upper bounds given by FP2 are larger and much looser than those of FP1, i.e. ignoring en-route
time leads to more optimistic upper bounds. Also, with high and/or imbalanced demand as
is typical in practice (Instance 1 and Instance 3), the policy that takes the dependence of the
en-route time distribution on the number of idle vehicles into account performs much better than
the policy that ignores this dependence. With relatively low and balanced demand (Instance 2),
the performance of the policy resulting from FP2 is comparable with that from FP1.

Figure 2 shows that under both the static and the state-dependent policy based on FP1,
the numbers of available vehicles are much better controlled than under the other policies, and
are close to the optimal numbers given by FP1. The state-dependent policy based on FP1 gives
slightly better results than the static policy based on FP1.
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Figure 1 � Simulated average pro�ts per unit time under di�erent policies (columns) for three

instances (rows).

Figure 2 � Average number of idle vehicles at di�erent zones (x-axis), under di�erent policies

(columns) for three instances (rows).
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