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1 INTRODUCTION

SARS-CoV-2 has become one of the most devastating pandemics in human history and is still,
two years after the pandemic onset, contributing to the breakdown of societies around the
world. As a result, several countries are experiencing deep economic, social and political crises.
Furthermore, multiple non pharmaceutical interventions (NPIs), i.e. social distancing, travel
restrictions, partial/full lockdowns, have been put in place to mitigate human contacts. These
interventions have important social, economic, public health, legal implications and they should
be strongly justified. In general, decision making of such measures is based on epidemiological
forecasts. Thus, understanding human contact patterns and their underlying social interactions
is crucial to estimate reliable infectious disease transmission models. This is especially the case
in large densely-crowded urban and transportation systems where complex social interactions are
widespread. In this paper, we present a new estimation method of human contact patterns based
on an activity-based model of travel demand. The latter are used in transportation research
to model persons’ travel behavior. Nonetheless, they are not explored enough in epidemiology.
Therefore, we demonstrate the effectiveness of our modeling strategy by setting up an activity-
based model based on publicly available data, such that the approach is easily reproducible.
Afterwards, we derive large scale multi-layer contact networks. Finally, we estimate the related
age-stratified contact matrices.

2 MODELING FRAMEWORK

The modeling framework consists of three parts. The first part is dedicated to the behavioral
synthetic population of Île-de-France based on multiple open data sources. In the second part, we
set up an efficient and fast algorithm to estimate the large scale multi-setting contact network
based on the targeted behavioral synthetic population. Finally, at the end of this process,
we compute the age-specific contact matrices that estimate contact frequencies of individuals
clustered by age groups in two particular settings, i.e. household and overall layers.
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I. Saadi, E. Côme, L. Luong Nguyen and M. Zargayouna 2

2.1 Behavioral synthetic population

A behavioral synthetic population is a detailed representation of the true population based
on multiple data sources. It includes several millions of individuals grouped into households.
Socio-demographic attributes are inferred and daily activity-travel schedules are associated to
the individuals of that population. The integrated modeling framework simulates the synthetic
population of Île-de-France, a densely populated area of 12,011 km2 consisting of eight de-
partments, including Paris the capital of France. As of January 2021, the population size of
Île-de-France is around 12,213,447 inhabitants, resulting in a population density of 1,017 inhab-
itants/km2. The proposed behavioral synthetic population is based on multiple datasets which
are publicly available, thus allowing full transparency and reproducibility of the present study.
We use the generation process proposed by Hörl & Balac (2021). Data gathering and pipeline
running are described at https://github.com/eqasim-org/ile-de-france.

2.2 Multi-layer contact network estimation

Infectious disease transmission dynamics are heavily reliant on the social interactions of the
individuals constituting the population. Modeling the human mixing patterns is indeed crucial
to understanding how epidemics spread in-between individuals. In this regard, the most appro-
priate approach consists of representing the contact patterns as a graph G = (V,E) where V ,
the set of vertices, are the individuals and E, the set of edges, are the contacts.

The total number of contacts is computed based on the spatiotemporal co-presence. In
other words, if a group of individuals share the same location at the same time, then we assume
that they might have met. The individuals’ spatiotemporal co-presence can be derived from
the activity-travel diaries. In doing so, we obtain detailed information on the spatiotemporal
meeting patterns, resulting in underlying exact upper-bound contact duration distributions. An
activity travel diary contains the reference number of the person, the activity purpose, start/end
times and location ID. For instance, we use activity-travel diaries (ATD) consisting of 20,716,218
records. We group the activity-travel diaries by unique location to apply the spatial constraint
of the co-presence. Then we compute a systematic pairwise comparison of individuals sharing
the same location to check for joint time windows.

In particular, we distinguish between the potential contact network Gp = (Vp, Ep) and the
effective contact network Ge = (Ve, Ee), and the relationship is described by |Vp| = |Ve| and
π|Ep| = |Ee|. Indeed, we consider a Bernoulli model by assuming a single parameter π. It
means that if a contact is detected, it is accepted with a probability π. We compute the contact
duration and we assign its purpose, e.g. household (H), work (W), education (E), leisure (L),
shop (S), other (O) and/or hybrid (X-X). Given that the daily average number of contacts µc

is around 8 (5-14) (Béraud et al., 2015), and taking into account the statistical properties of
the potential contact network (before making the decision on preserving or not the contacts
after detecting the spatiotemproal co-presence), we can estimate the optimal value of π. Indeed,

we can state that µc =
2(|EH

p |+|EO
p |π)

Npop
where µc is the observed overall average daily number

of contacts (from the survey), |EH
p | is the total number of contacts in the household layer

from the potential graph Gp, |EO
p | the total number of contacts in all the other layers from

their corresponding potential graphs and Npop(= |V |) the number of vertices/individuals of the

graph. Thus, π =
µcNpop

2
−|EH

p |
|EO

p | . Note that |Ee| = |EO
e |+ |EH

e | = |EO
p |π + |EH

p |.

2.3 Numerical experiment

We build a representative population sample which represents 100% of the true population
size. The sampling procedure consists of the generation of a behavioral synthetic population of
around 12M persons grouped into 4M households. The basic statistical properties of the contact
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network are presented in Table 1.

Parameter Value

|Ee| 47,029,073
|V |(= Npop) 11,758,464

π 0.013

Table 1 – Properties of the effective contact network

Most contacts are non-hybrid (Figure 1a). Furthermore, the modeling framework highlights
two key aspects: the distributions of the location sizes (number of people sharing the same
location) (Figure 1b) and the daily number of contacts per person (Figure 1c) look like power law
distributions with cutoffs. The upper bound contact duration distribution is presented in Figure
1d. The waves are strongly influenced by the temporal patterns in workplaces and education-
related locations, e.g. 8 hours/day of working time and/or morning/afternoon presence at
workplaces. This is a mixture of layer-related contact duration distributions.
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Figure 1 – Key results

In households (Figure 2b), the main diagonal corresponds to the contacts of people of sim-
ilar age groups, i.e. children and parents. The secondary diagonals mainly correspond to the
parent-children contacts. In work (W)/education (E)/leisure (L)/shop (S)/other (O) layers,
we mainly find contacts in-between individuals of age 25-, 25 and 65, with some spread below
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Figure 2 – Age-specific contact matrices

and above these boundaries. Therefore, the corresponding patterns clearly emerge in the joint
(non-household layers) age-specific contact matrix (Figure 2a).

3 CONCLUSIONS

The pipeline framework (Eqasim) (Hörl & Balac, 2021) was initially designed for simulating
mobility of multi-agent systems. In this context, it adopts different modeling assumptions
regarding the spatiotemporal activity sequencing. The socio-demographic description of the
sythetic population is based on open data (INSEE) which are relatively reliable and highly
detailed with the possibility of matching individuals with their corresponding households. Such
data are rarely available in other countries. Nonetheless, the travel behavior description of
the agents is based on the National Household Travel Survey of 2008 (ENTD) as no viable
alternative is available, which may be a limitation. In fact, travel habits might have evolved.
Although the initial purpose of Eqasim is about transport and mobility, we demonstrate in this
paper that it can be an interesting option for modeling infectious disease transmission. From a
contact pattern standpoint, we show that a conventional activity-based model of travel demand
clearly captures the underlying human mixing patterns characterizing the different layers. We
also demonstrated that it is possible to reproduce the visitation and contact patterns (super-
spreaders, super-spreading events) previously described in the literature.

Further research is needed (a) to estimate the intra/inter-layer related parameters taking into
account key statistical properties from the existing literature. At this stage, we only considered
a parameter π. Incorporating variability into and/or in-between the layers is required to improve
the statistical representativeness of the effective contact network Ge. (b) To incorporate dynamic
features into the model. For example, a dynamic contact network can be used to take into
account the effects of NPIs. (c) To validate the contact network with respect to key observed
statistical indicators. (d) To run infectious disease transmission models on the estimated contact
networks to assess the effects of various mobility-related NPIs on the confirmed cases/deaths.
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