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1 Introduction

Logistics service providers (LSP) increasingly use crowdsourced workforce on the last-mile to
fulfill customers’ expectations regarding same-day or on-demand delivery. Crowdsourced couri-
ers, typically independent contractors, flexibly decide when and how much to work (see, e.g.,
Amazon Flex or DoorDash), thereby introducing uncertainty to an LSP’s strategical and opera-
tional planning. Accordingly, current research on crowdsourced deliveries focuses on developing
algorithms for operational decision-making under supply uncertainty. Both, static (see, e.g.,
Archetti et al. (2016)) and dynamic approaches (see, e.g., Arslan & Zuidwijk (2016)) exist and
consider mostly two different crowdsourced driver types: gigworkers and occasional drivers. The
former are primarily financially incentivized and the work for the LSP constitutes a significant
amount of their income. The latter are financially independent of the LSP and typically only
accept deliveries that overlap with routes they intend to take anyway. To mitigate supply un-
certainty, LSPs rely on full-time employees, in the following called fixed drivers, to compensate
for periods with low availability of crowdsourced drivers. This yields a planning problem with a
partially uncertain workforce, which has been analyzed in the context of shift scheduling (Ulmer
& Savelsbergh, 2020).

So far, the strategic workforce planning question of how many fixed drivers to hire for a
certain time horizon, while anticipating operational implications, has not been studied in a
crowdsourced delivery context. Answering this question entails a trade-off between the costs
of hiring a new employee and relying on crowdsourced workforce. Against this background,
we study a novel approach that integrates the strategic workforce planning problem with its
operational implications. We consider an LSP that operates a mixed fleet consisting of fixed
drivers, gigworkers and occasional drivers in an areaM, knowing the expected demand at every
location i ∈ M. The LSP has to make decisions on two planning levels: On the strategic level,
she has to decide on the number of fixed drivers to hire in every time step t over a time horizon T .
On the operational level, defined on time horizon T̃ , she has to find an optimal routing policy for
her fixed drivers while outsourcing requests to crowdsourced drivers. We find that integrating
these two planning levels and taking into account future crowdsourced driver capacity in the
workforce planning problem yields a significant total cost reduction compared to an approach
that only considers immediate operational implications.
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2 Methodology

This section details the introduced problem setting. In a first step we describe the strategic and
in a second step the operational level.

2.1 Strategic level

We formulate the decision making problem under uncertainty faced by the LSP as a Markov
Decision Process. We describe the state of the fleet St in every time step t ∈ T by St =(
nFD
t , nGW

t , nOD
t

)
∈ N3

0. State variable nFD
t represents the number of fixed drivers (FD), nGW

t

the number of gigworkers (GW), and nOD
t the number of occasional drivers (OD). We denote

the total costs of the LSP in time step t with Ctot
t . These consist of fixed costs Cfix per fixed

driver and time step and of operational costs Cops
t , that are evaluated on the operational level:

Ctot
t (nFD

t , nGW
t , nOD

t ) = Cops
t (nFD

t , nGW
t , nOD

t ) + Cfix nFD
t . (1)

At the beginning of each time step t the LSP decides how many fixed drivers to add to her
fleet. We define the action space by A =

{
0, ..., aFD

max

}
∈ N0 with aFD

max being the maximum fixed
driver fleet size increment. Upon the hiring decision, we evaluate the operational problem and
subsequently the joining and resignation process of crowdsourced drivers. The joining process
models new private individuals intending to work as crowdsourced drivers for the LSP, starting
in time step t. We describe the joining process by a fleet size increase rate qα (α ∈ {GW,OD}),
expressed as percentage of nαt , and model it as a normally distributed random variable. The
resignation process describes crowdsourced drivers that decide not to work for the LSP anymore,
e.g., because they found a better outside option. We denote the probability of drivers of type α
to resign at the end of time step t with pα and the total number of drivers of type α resigning
with Xα. The resulting number of drivers in the next time step then reads

nαt+1 = nαt −Xα + qα · nαt . (2)

Starting in S0, the LSP’s objective is to minimize expected future total costs over T

v(S0) = min
π∈Π

E

[
tmax∑
t=0

γt · Ctot
t

(
nFD
t , nGW

t , nOD
t

)
|S0

]
. (3)

Here Π denotes the set of all policies, π refers to a single policy and γ is the discount factor. We
solve this problem with backward dynamic programming.

2.2 Operational level

The problem on the operational level consists of finding optimal routing policies for the fixed
drivers, while possibly outsourcing some requests to crowdsourced drivers. We define the opera-
tional problem on a different time horizon T̃ and we denote its time variable with t̃. The strategic
level’s time variable t can be segmented into N representative time intervals. The operational
problem is then solved for each interval, yielding Cops

t,n for n ∈ {1, ..., N}. The resulting Cops
t,n is

obtained via Cops
t,n =

∑
n dn ·C

ops
t,n , where dn is the number of occurrences of time interval n in t.

We face a pick-up and delivery problem, where requests arise at some location i ∈ M and
need to be delivered to a destination j ∈M. We denote with Eij(t̃) the number of FDs driving
from location i ∈M to location j ∈M without serving a request. The variable Eii(t̃) describes
waiting FDs at location i. Further, Fij(t̃) describes the number of FDs delivering a request
from i to j. Requests follow a Poisson arrival process, with arrival rate λRi . Upon arrival at
location i, a request is matched to an FD, GW, or OD, or not matched at all. We denote routing
costs by cβij (β ∈ {FD,GW,OD, ∅}), where c∅ij is a penalty that arises when a request cannot be
served and leaves the system. While routing costs for FDs and GWs depend on the trip length,
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ODs receive a fixed compensation per request. Similarly, crowdsourced driver arrivals follow a
Poisson process with rate λαi , where λ

GW
i depends on nGW

t and the distribution of requests.
The arrival rate λOD

i depends on nOD
t and area specific mobility patterns.

We denote with Q the empty FD-routing policy, i.e., a decision rule determining whether an
FD should remain at station i or drive without freight to a location j. The objective is to find
a policy Q that minimizes total routing costs

min
Q

∑
i,j∈M

Eij(t̃) · cFD
ij +

∑
β

cβij ·Aiβ(t̃)

 β ∈ {FD,GW,OD, ∅} . (4)

The variable Aiβ(t̃) denotes the number of requests matched to option β at station i. This
problem becomes intractable for large fleets sizes. Therefore, we follow a fluid approximation
approach based on the results from Braverman et al. (2019). We interpret the system as a
closed queueing network with |M| single server queues representing FDs not carrying load and
waiting at station i (Eii) and service rate λRi , |M|2 − |M| infinite server queues representing
fixed drivers driving from i to j (Eij) without serving a request, and |M|2 infinite server queues
for fixed drivers serving a request from i to j (Fij) with service rate µij . We represent with
eij and fij the fluid scaled queue lengths Eij and Fij , i.e., eij =

Eij(t̃→∞)

nFD
t

and fij =
Fij(t̃→∞)

nFD
t

.

We denote with aβi the fraction of requests served by fixed drivers, by crowdsourced drivers, or
unserved requests. The terms PR

ij , P
G
ij and PO

ij describe request, GW, and OD route patterns
respectively. The operational problem is then formulated as the following linear program:

min
e,f,aβ

∑
i

∑
j

∑
β

(
cβij · λ

R
i · a

β
i · P

R
ij

)
+ cFD

ij nFD
t eij

 (5)

(λR
i /n

FD
t ) · aFD

i · PR
ij = µij · fij ∀i, j ∈M (6a)

λR
i · aGW

i · PR
ij ≤ λGW

i · PGW
ij ∀i, j ∈M (6b)

λR
i · aOD

i · PR
ij ≤ λOD

i · POD
ij ∀i, j ∈M (6c)

µij eij ≤
∑
k

µkifki, i 6= j ∀i, j ∈M (6d)∑
k, k 6=i

µki eki ≤ (λR
i /n

FD
t ) aFD

i ≤
∑
k, k 6=i

µki eki +
∑
k

µki fki ∀i ∈M (6e)

(λR
i /n

FD
t ) aFD

i +
∑
j, j 6=i

µij eij =
∑
k, k 6=i

µki eki +
∑
k

µki fki ∀i ∈M (6f)

aFD
i + aGW

i + aOD
i + a∅i = 1 ∀i ∈M (6g)

The objective describes the minimization of operational costs arising from delivering requests and
empty-FD-routing. Constraints (6a) to (6c) describe Little’s law of flow conservation. Constraint
(6d) is the relaxed Little’s law, stating that the mass of out-going empty FDs in one direction j
at one location i cannot be higher than the mass of incoming full FDs. Constraints (6e) and (6f)
state equality between the total rate of outflow from location i to the total rate of inflow. Finally,
constraint (6g) ensures that at every location i a request is either matched or not matched. The
objective of this linear program yields the approximated operational cost of a representative time
interval, which can then be used to compute Cops

t as input for the strategic level’s problem.

3 Preliminary results

In our preliminary experiments, we study an LSP with an initial fleet of ten FD, one GW, and
one OD. We consider costs per request of 4$ and 2$ respectively for GWs and ODs; FDs receive
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a fixed wage of 20$/h. Furthermore, we consider a joining rate with distribution N (0.3, 0.05)
to model an average increase of the crowdsourced driver fleet of 30% per time step. We choose
a resignation probability of pα = 0.1, which seems to be a reasonable choice when comparing
to established crowdsourced platforms, e.g., Uber (Hall & Krueger, 2018). The area consists of
6 locations, and we consider a demand of on average 6 requests per location per hour for the
operational level. We choose a time horizon of 30 weeks on the strategic level to account for
the long-term costs of hiring fixed drivers and assume constant demand levels over the strategic
time horizon. To benchmark our approach, which integrates future crowdsourced driver capacity
via backward dynamic programming (BDP), we compare it with a myopic approach, that bases
hiring decisions only on immediate operational costs.

Figure 1 shows the accumulated total cost over time for both the BDP and the myopic
approach. One can see that the hiring policy drawn from the BDP approach leads to lower total
costs at the end of the time horizon. In the beginning, however, total costs for BDP are higher
since it does not hire as many FDs as the myopic approach and has to pay penalties on not
served requests. Figure 2 shows the accumulated total costs in the last time step. The two right
bars result from a different study, in which the degree of synchronization of OD-specific mobility
patterns and request patterns is lowered. The second case’s higher costs emphasize the influence
of mobility patterns on the success of crowdsourced delivery services.

Figure 1 – Accumulated total costs Ctot
t over

time (based on 1000 runs)
Figure 2 – High vs. low degree of synchro-
nization (based on 1000 runs)
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