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1 INTRODUCTION

Truck transport plays a pivotal role in inland container supply chains, due to fast transport times,
and direct connection with (almost) all destinations (Fazi et al., 2020, Zhang et al., 2020). Also,
in the context of empty containers, trucks are crucial to re-position them quickly at the sea port
side in order to avoid usage penalties for shippers from shipping lines and to meet the request of
shippers in the hinterland. It is a challenge for truck operators to minimize trucking costs and
to devise schedules that fit with the highly diverse requirements of the hinterland supply chain.

In this study, we propose a multi-trip full-truck container scheduling problem that considers
a general inland container setting, where a central dry-port has to satisfy a set of requests from
a set of shippers located in its hinterland. A shipper may request full or empty containers to
be delivered or picked up within time windows. Origins and destinations include, besides the
shipper’s premises, also the dry-port and the sea port. Full containers if unloaded directly may
be re-used as empty containers in the network to satisfy other requests or can be re-positioned
at the dry-port to fill up the available limited stock, also used to satisfy empty requests. If
necessary, the trucks can retrieve empty containers from a local (empty) depot, obviously gen-
erating extra transport costs. The goal is to satisfy the shippers’ requests at a minimum cost
with a fleet of trucks, which may perform multiple trips during the day. The challenge is also
the synchronization of the trucks’ trips for the re-usage of empty containers in order to use as
much as possible the available stock of containers at the dry-port.

In the literature, the problem of container truck routing and scheduling, known also as
drayage problem, has been addressed in a few studies. In general, trucks are bounded to very
short trips since the carried containers are related to a single shipping request and that trucks
can in general only carry one or two containers (Imai et al., 2006). Several variants have been
developed. Consideration of single and multiple starting depots, reposition of empty containers,
time windows, multiple container sizes, etc. Among others, see as main examples: Caris &
Janssens (2009), Zhang et al. (2020) and Zhang et al. (2011). However, available studies have
not considered, or at least not together, empty container inventory management and multi-trip
scheduling problems. The former has been considered mostly as relocation problem and with
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empty containers as unlimited resource; Zhang et al. (2020) have addressed the problem, but
developed a non-linear formulation.

After modelling the problem mathematically with a mixed integer linear programming (MILP)
formulation, we propose an exact approach based on a column-and-row generation algorithm em-
bedded in a branch-and-price framework. The row generation is needed since the stock of empty
containers at the dry-port can change dynamically over time; therefore, trucks may influence
each other trips. Numerical experiments follow to assess the performance of the methodology
against the MILP formulation. In this regard, classical Solomon’s instances have been adapted
to the problem.

2 Mathematical model

We consider a network G(N,A) with A the set of arcs and with N set of nodes that consists of
the dry-port (node 0), the depot for empties (node 1), and a node for each shipper. S identifies
the subset of shippers within N . Cij is the travelling distance between node i and j. The sea port
node is “bypassed” in our network, meaning that if a shipper requires an inbound or outbound
connection to it, the distance from/to the other nodes includes the detour through the sea port.

We define six types of shippers depending on whether they request an inbound or outbound
full or empty container. In particular a shipper type is identified with the symbol ♢ab, where a
stands for the inbound request and b for the outbound. For example, a shipper ♢FE receives a
full container and releases immediately an empty one; a shipper ♢E∅ simply requests an empty
container and releases nothing. Next, we define the set of trucks K which can carry one container
at a time. This is a common assumption in the drayage literature, due to the larger use of 40ft
units. Also, we define R = 1 . . . |R| as the set of possible trips. If i < j with i, j ∈ R, then trip
i will be scheduled before trip j. For each shipper i ∈ S, the time window is represented by
[Ai, Di]. Finally, a number of empty containers E is initially available at the dry-port.

With regard to variables, xkrij is the binary routing variable for truck k in trip r and arc (i, j).
Time variable tkri (∈ R+) is for node i = 0 the departure time, whereas for i ̸= 0 is the arrival
time. tkrend (∈ R+) is the end time of trip r of truck k. Concerning variables keeping track of the
inventory available at the dry-port, binary variable zαβ,kr equals 1 if truck α in trip β starts after
truck k in trip r, and is relevant when “αβ” starts with an empty container removal from the
dry-port, and “kr” ends by filling the dry-port with an empty container. Finally, binary variable
yαβ,kr is 1 if truck/trip “αβ” starts after “kr”, and is relevant if both trips started with an empty
container removal from the dry-port.

We formulate the problem as follows:

min
∑
k∈K

∑
r∈R

∑
(ij)∈A

xkr
ij Cij (1)

∑
(0i)∈A

xkr
0i ≤ 1 ∀k ∈ K, r ∈ R (2)

∑
j:(ji)∈A

xkr
ji =

∑
j:(ij)∈A

xkr
ij ∀k ∈ K, r ∈ R, i ∈ N (3)

∑
k∈K

∑
r∈R

∑
j:(ji)∈A

xkr
ji = 1 ∀i ∈ S (4)

tkri + Cij ≤ tkrj +M(1− xkr
ij ) ∀k ∈ K, r ∈ R, i ∈ N, j ∈ N/{0} (5)

tkri + Ci0 −M(1− xkr
i0 ) ≤ tkrend ∀k ∈ K, r ∈ R, i ∈ S (6)

(Ai + Ci0)x
kr
i0 ≤ tkrend ∀k ∈ K, r ∈ R, i ∈ S (7)

tkri ≤ Di ∀k ∈ K, r ∈ R, i ∈ S (8)

tkrj ≥ (Ai + Cij)x
kr
ij ∀k ∈ K, r ∈ R, i ∈ S, j ∈ S (9)
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tkr+1
0 ≥ tkrend ∀k ∈ K, r ∈ 1 . . . |R| − 1 (10)

tkr0 ≤ tkrend ∀k ∈ K, r ∈ R (11)

tαβ0 −tkr0 ≤ Myαβ,kr+M(1−
∑

i:(0i)∈♢E∅∪♢EF

xαβ
0i )+M(1−

∑
i:(0i)∈♢E∅∪♢EF

xkr
0i ) ∀k, α ∈ K, r, β ∈ R (12)

yαβ,kr + ykr,αβ = 1 ∀k, α ∈ K, r, β ∈ R (13)

(2− yαβ,γδ + ykr,αβ) ≥ 1− ykr,γδ ∀k, α, γ ∈ K, r, β, δ ∈ R (14)

tαβ0 − tkrend ≤ Mzαβ,kr +M(1−
∑

i:(i0)∈♢FE

xkr
i0 ) +M(1−

∑
i:(0i)∈♢E∅∪♢EF

xαβ
0i ) ∀k, α ∈ K, r, β ∈ R (15)

zαβ,kr ≤
∑

i:(0i)∈♢E∅∪♢EF

xαβ
0i ∀k, α ∈ K, r, β ∈ R (16)

zαβ,kr ≤
∑

i:(i0)∈♢E∅

xkr
i0 ∀k, α ∈ K, r, β ∈ R (17)

tkrend − tαβ0 ≤ M(1− zαβ,kr) ∀k, α ∈ K, r, β ∈ R (18)

xkr
0i ≤ E −

∑
α∈K

∑
β∈R

ykr,αβ +
∑
α∈K

∑
β∈R

zkr,αβ + (1− xkr
0i ) ∗M ∀i ∈ ♢E∅ ∪ ♢EF , k ∈ K, r ∈ R (19)

The objective function (1) minimizes the total routing cost. Constraints from (2) to (4) are the
classical VRP constraints. Inequalities (5) compute the departure of a truck at a certain node, whereas
(6) the end of the trip. With (7), (8) and (9) we impose that the departure time of a truck from a shipper
is within its time window. (10) imposes that a trip must start after the previous has ended. With (11)
the end of a trip is after its start. (12) defines variables yαβ,kr, whereas (13) and (14) avoid wrong values
in case of equal departure times. Inequalities (15) define variable zαβ,kr. This takes value 1 if trip r of
truck k ends before trip β of truck α and if “αβ” reduces the inventory of the inland terminal of 1 empty
container and, finally, if “kr” increases the inventory by bringing a container from ♢FE . From constraints
(16) to (18) we prevent zαβ,kr to take value 1 when not necessary. Finally, (19) imposes that the net
amount of empty containers E is not exceeded.

3 Solution framework

For the proposed problem, we develop a tailored column-and-row generation approach. The row gener-
ation is required since the availability of empty containers is dynamic and trucks can affect each other
routes. This algorithm has been proven to be quite effective in a number of papers, see Maher (2016) and
Li & Jia (2019). Therefore, our approach consists in dynamically adding rows (i.e., constraints) to the
master problem, related to critical events occurring in the added paths, i.e, removal of containers from
the dry-port; where a path is defined as a sequence of trips.

Like every classical column generation approach, the algorithm solves first the relaxed master problem.
The pricing problem can be treated as an Elementary Shortest Path Problem with Resource Constraints,
which is NP-hard in the strong sense. To solve it, we develop an exact algorithm based on the Pulse
algorithm, proposed by Lozano et al. (2016). To get integer solutions, we embed the column-and-row
generation in a branch-and-price framework. Hence, we develop a classical branching scheme based on
arcs, and apply column generation at each node.

4 Preliminary numerical tests

We chose the classical Solomon’s instances for the Vehicle Routing Problem with Time Windows with
25 nodes. We selected C1 type of instances for a total of 9 instances. These instances have clustered
customers and narrow time windows. While the given coordinates for the depot (i.e., dry-port in our
setting) are (40,50), the coordinates of the empty depot were set to (0,0), and the sea terminal ones to
(70,80). These coordinates were chosen to penalize the need to reach the empty depot. The customers’
types were generated randomly, as well as the origin and destination of the cargo, be it the dry-port or
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Table 1 – Results on 25 nodes adapted Solomon’s instances. UB and LB stand respectively for
upper bound and lower bound for the minimization problem. Timings are expressed in seconds.

CPLEX MILP B&P
Instance UB LB Gap Time UB LB Gap Time
C101 1698 1494 0.12 5310 1698 1698 0 307
C102 1118 1118 0.00 146 1118 1118 0 0.57
C103 1120 1120 0.00 50.1 1120 1120 0 5.06
C104 767 767 0.00 662 767 767 0 24.91
C105 1869 1361 0.27 2348 1869 1869 0 1.46
C106 1497 1375 0.08 419 1497 1497 0 4.22
C107 1264 1264 0.00 28.27 1264 1264 0 0.83
C108 938 938 0.00 18.32 938 938 0 4.2
C109 968 968 0.00 27.86 968 968 0 4.01

the sea port. In Table 1, we report the results of the experimentation. We compare the performances of
the MILP formulation (CPLEX MILP) and our algorithm, referred to as B&P.

From the table, we can appreciate the good performance of both methods, though the B&P outper-
forms CPLEX in terms of both the overall speed and quality of the solution. All nine instances are solved
to optimality with B&P, whereas CPLEX struggles for three of them.

5 Conclusions
In this paper, we have studied a particular drayage problem which is typical in several inland container
supply chains. The multitrip component and the presence of constraints to avoid stockout have not re-
ceived much attention in the drayage literature. We have modelled the problem with a MILP formulation
and proposed an exact approach based on column-and-row generation. The first experiments on classical
instances with 25 nodes are promising and the exact method outperformed CPLEX both in terms of
quality and speed. For future research, we expect to further refine the algorithm and process even larger
instances. Finally, if real-world data will become available, it would be interesting to assess the impact of
empty container re-positioning in this context and to assess the goodness of current planning practices.
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