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1     INTRODUCTION 
Rail is increasingly selected for freight transport due to its advantages with respect to operational 

costs, efficiency, reliability, emissions, safety, and it is gradually used within the intermodal context, 

motivating national and international agencies to promote a shift of passengers and freight from 

other alternatives (Cacchiani et al., 2010; Pineda-Jaramillo et al., 2021). Considering these trends, 

rail intermodal operations play a key role in terms of reliability for the freight transport sector, and 

it is therefore essential to optimize all aspects including the operational use of the rail infrastructure. 

Given the complexity of the rail networks and the amount of rolling stock running on it, an important 

aspect to consider are the delays, which can be classified in those that are caused directly by the 

variability of process times preparing the train for departure, and those caused by the variability in 

the actual operation of the train along its journey (Goverde et al. 2016). Arrival delay prediction 

(i.e., numerical difference between the scheduled arrival time and the actual arrival time in a trip 

between a pair of stations) is necessary because once disturbances occur, train dispatchers must 

assess their impact on the overall schedule and try to reduce losses by adjusting the operation, in 

order to diminish the chain of delays that could affect the entire system operation (Bešinović et al. 

2016).  

Although train disturbance prediction models have been developed using various approaches (De 

Martinis and Corman 2018; Zheng and McDonald 2021; Barbour et al. 2018), they still have 

difficulty in predicting the arrival delay time in the short-term once the train leaves the previous 

control station, and they also fail to identify the underlying causes of delay and the expected impact 

on operations, which significantly limits the efficacy of mitigation actions. To address these issues, 

the purposes and major contributions of this study are to examine different data-driven models for a 

short-term prediction of arrival delay time in freight rail operations, and then to examine the 

importance of the features associated with arrival delay time, with the aim of developing a tool to 

assess operational interventions to reduce disturbances and their subsequent delays in freight 

operations. 

2     METHODOLOGY 
2.1  Data collection, data pre-processing and feature engineering 
Data related to freight rail operations performed between November 2019 to April 2021 were 

provided by the National Rail Company of Luxembourg - CFL Multimodal. Many attributes related 

to characteristics related to train, wagon, station and operations can be found among the collected 

datasets. The datasets were merged and processed to count all freight rail operations made between 

Bettembourg (Luxembourg) and other nine stations within the EU (Boulou, Champigneulles and 

Lyon in France; Zeebrugge and Antwerp in Belgium; Kiel and Rostock in Germany; Poznan in 

Poland; and Trieste in Italy), with multiple possible routes to all of them, considering availability. 

All datasets were organized and merged to create a unique dataset. Then, each row is organized in 

such a way that it presents the trips between a pair of control stations, which are the stations that the 

train crosses between the station of origin and the stations of destination. 

Data imputation (i.e., filling missing values using median values for numerical features or the most 

common class for categorical features) was made to the merged dataset. Then, some additional 

features were created using available features in the dataset (i.e., feature engineering). Subsequently, 

categorical encoding was applied to transform the categorical features using dummy variables, while 

outliers were removed from the numerical features using the interquartile range method and the z-

score normalization method was implemented to rescale the numerical features. Finally, a 

correlation analysis was performed to select the features to train the models to diminish redundant 

predictors. 
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The feature to be predicted in this study is the arrival delay time between a pair of control stations. 

Therefore, the most suitable data-driven approach is regression, which can be considered as 

supervised ML models used for predicting numeric values. After performing the data pre-processing 

and feature engineering, we identified a total of 13,894 trips between control stations.  

2.2  Data-Driven models and analysis of input features 
Data were randomly split into a training and test set (70% and 30%, respectively) with the aim of 

using the former for training the models and the latter to assess their performance, where each subset 

was made-up by the target feature to predict (arrival_delay_time) and the remaining independent 

input features following the same proportion. Then, a suite of ML models that have been extensively 

and effectively implemented in multiple regression problems was trained to predict the arrival delay 

time. Furthermore, the relative mean squared error (rMSE) and the coefficient of determination (R2) 

evaluation metrics were used as loss functions to evaluate data-driven model performance, where 

the model with a greater value of R2 coefficient, and a lesser value of rMSE, the better. 

The model optimization is made using the random search method, with the aim of tuning the 

parameters of the models and the stratified K-fold cross-validation method was implemented to 

evaluate the model’s performance. After choosing the best ML model for predicting the arrival delay 

time, the learning curve method was used to identify possible overfitting or underfitting problems. 

After obtaining the best data-driven model, the impacts of the features associated with arrival delay 

time are obtained using the coefficients given by the model itself for every input feature. Coefficients 

in the output of the models represent the relationship between the given input feature 𝑥𝑖 and the 

target 𝑦 (i.e., arrival delay time), assuming that all the other features 𝑥𝑗 remain constant, which 

follows the conditional dependence theory. These coefficients indicate the impact of an input feature 

on the model output, allowing to assess the effect of every single feature on the arrival delay time.  

3     RESULTS 
3.1  Data-driven models 
Several combinations of features were tested in order to identify the combination that achieves better 

results in the ML models, where the final composition of the dataset is presented in Table 1.  

Table 1 - Composition of the final dataset 
Feature Description Feature distribution and statistics 

TARGET: arrival_delay Arrival delay time [min] range: -289.0 – 1570.0; median: 12.0, mean: 78.4, std: 245.4 

teu_count Number of TEU (Twenty-foot Equivalent Unit) range: 0.0 – 98.4; median: 64.5, mean: 59.0, std: 21.0 

train_length Train length [m] range: 14.0 - 720.0; median: 544.0, mean: 536.5, std: 136.2 

total_distance_trip Distance of the TOTAL trip [km] range: 84.5 – 1454.1; median: 648.6, mean: 547.5, std: 274.1 

departure_delay Departure delay time [min] range: -260.0 – 1562.0; median: 20.0, mean: 84.6, std: 237.3 

distance_between_control_statio

ns 
Distance between control stations [km] range: 1.5 – 815.3; median: 74.2, mean: 126.6, std: 172.7 

weight_per_length_of_train Train weight over train length [t/m] range: 0.9 – 4.1; median: 2.2, mean: 2.2, std: 0.5 

weight_per_wagon_of_train Train weight over number of wagons [t/wagon] range: 19.1 – 119.3; median: 69.5, mean: 67.1, std: 16.5 

Then, after implementing a suite of data-driven models using the stratified K-fold cross-validation 

method, we obtained the initial results presented in Table 2, where the evaluation metrics are 

presented. Considering that the lightGBM, the CatBoost, and the GBR models have the best 

performance considering the evaluation metrics, the random search method was implemented to tune 

the performance of these models, analyzing the behavior of their learning curves to ensure they are 

correct (i.e., the necessary clear convergence trend between training and cross-validation scores, 

allowing to foresee if adding more observations to the training of these models will likely improve 
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their performance, decreasing risks of overfitting and underfitting). Table 2 also presents the overall 

results, including a comment defining whether the learning curve is good or bad considering the 

aforementioned behavior. 

Table 2 – Results 
Model R2 rMSE Model R2 rMSE 

Initial results. 

Light Gradient Boosting Machine 

(lightGBM) 
0.8579 0.1421 Ridge Regression (ridge) 0.8486 0.1514 

CatBoost Regressor (CatBoost) 0.8575 0.1425 Bayesian Ridge (BR) 0.8486 0.1514 

Gradient Boosting Regressor (GBR) 0.8566 0.1434 Lasso Regression (lasso) 0.8484 0.1516 

Linear Regression (LR) 0.8486 0.1514 Random Forest Regressor (RF) 0.8451 0.1549 

Model 
Behavior of the 

learning curve 
R2 rMSE Model 

Behavior of the 

learning curve 
R2 rMSE 

Results of the best models after tuning their parameters using the random search method. 

Initial lightGBM Good 0.8579 0.1421 Tuned lightGBM Bad 0.8585 0.1415 

Initial CatBoost Good 0.8575 0.1425 Tuned CatBoost Bad 0.8584 0.1416 

Initial GBR Good 0.8566 0.1434 Tuned GBR Bad 0.8581 0.1419  

 

Considering the results presented in Table 2, even though the results are quite similar for some 

models, the initial lightGBM (an open-source gradient boosting framework) model slightly 

outperforms for predicting the arrival delay time in freight rail operations considering the evaluation 

metrics (although any of those are valid options, considering the similarities in the evaluation 

metrics). Therefore, this model is selected to assess the impact of the input features on the model 

output, and, furthermore, to analyze the interconnection of disturbances and their subsequent delays. 

3.2  Analysis of the input features 
Figure 1 provides the importance of each input feature on the magnitude of the initial lightGBM 

model output, revealing that the departure delay time is the most important feature for predicting the 

arrival delay time, followed by the distance of the trip (both between control stations and total 

distance) and the composition of the train (in terms of weight, length and number of wagons). 

 
Figure 1 - Plot showing the input feature importance on arrival delay time resulting from 

the initial lightGBM model. 

4     DISCUSSION 
To the best of our knowledge, this is the first study where the gradient boosting model has been used 

to predict the arrival delay time in freight rail operation research. Other studies that have obtained 

acceptable results using different ML models in freight rail operations, are the one made by Pineda-

Jaramillo et al. (2022) who implemented a CatBoost model to analyze the relationship between the 

train and the operational features with the disturbances and their subsequent delays, and the studies 

performed by Wen et al. (2019) and Oneto et al. (2018), who explored the use of artificial neural 

networks to predict delays in freight trains. 
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Pineda-Jaramillo et al. (2022) made a similar analysis for freight rail operations, finding that the 

greater the train weight, length and weight per wagon, and the lower the number of wagons, the 

greater the probability that the trip will be delayed. Besides, some studies have identified that train 

length affects the punctuality of passenger and freight trains (Økland and Olsson 2021; Olsson and 

Haugland 2004; Harris and Godward 1992), whereas Van Der Kooij et al. (2017) found that 

imposing temporary speed restrictions to heavier and longer passenger trains to ensure the safe use 

of the infrastructure can cause vital delays in the network. 

The main contributions of this study are summarized as follows (a) A consistent short-term 

predictive data-driven model was developed, identifying that the lightGBM implementation of the 

gradient boosting machine model can predict the arrival delay time in freight rail operations, 

outperforming other data-driven models; (b) a further analysis of the impacts of the features 

associated with arrival delay time was made, revealing that the departure delay time, the distance of 

the trip and the composition of the train are crucial to predict the arrival delay time in freight rail 

operations; and (c) the short-term prediction model developed in this study can be used as a tool by 

the National Rail Company of Luxembourg. For instance, through a simple web service, it is possible 

to know which will be the arrival delay time of a train, and then assess future operational 

interventions in order to reduce disturbances and their subsequent delays in their freight operations. 
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