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1 INTRODUCTION

E�ective real-time management of railway tra�c is crucial to delivering good railway perfor-

mance. In particular, making changes to the timetable in response to an initial delay can help

to reduce the amount of additional delay caused to other trains as a result of the initial in-

cident. This practice is known as timetable rescheduling. The Train Timetable Rescheduling

Problem (TTRP) (Cacchiani et al., 2014) can be solved in order to determine the optimal way to

reschedule the timetable. A large number of di�erent TTRP problem variants, models, objective

functions and solution methods have been studied.

However, the implications for TTRP models of economic competition between railway op-

erators has not been considered widely, see (Luan et al., 2017). In recent decades, di�erent

forms of competition have been introduced in several European railway systems, such as those

of Germany, Great Britain and Sweden (IBM, 2011). Where trains are operated by more than

one di�erent company over the same tracks, timetable rescheduling has the potential to impact

these operators unequally. In order to be perceived as fair, a TTRP model must not systemat-

ically favour some operators over others. A perception of unfairness would be a serious barrier

to the practical deployment of TTRP models in competitive railway systems. Therefore, it is

essential that the fairness characteristics of such models are understood. This study investigates

the fairness of solutions obtained from solving the TTRP.

This paper is organised as follows. We �rst describe our methodology by de�ning our notions

of fairness and e�ciency and how to evaluate them. In our results section, we present an analysis

of the fairness of e�ciency-maximising TTRP solutions. This is supplemented by an analysis

of the interactions between pairs of operators, where we also consider the fairness-e�ciency

trade-o�.
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2 METHODOLOGY

2.1 E�ciency

Our measure of the overall system e�ciency was developed with Network Rail for our TTRP

system (see Reynolds et al. (2020)). It is designed to model the utility of Network Rail, which

can be seen as the central decision maker for rescheduling decisions. It is designed to take into

account the overall quality of service provided to passengers.

Given a feasible solution x to a given instance, the e�ciency is de�ned as

U(x) =
∑
k∈K1

Uk(x) + w
∑
k∈K2

Uk(x), (1)

where K1 and K2 are sets containing the class 1 (express passenger) and class 2 (ordinary pas-

senger) trains, respectively, Uk(x) is the utility accrued from train k, and w = 0.4 is a weight

that controls the priority given to class 1 trains in comparison to class 2 trains. The priority

given to class 1 trains by the value of w re�ects the fact that class 1 trains typically carry more

passengers. Furthermore, class 1 trains usually complete longer journeys and hence delays to

class 1 trains can have a greater impact in terms of reactionary delay outside the geographical

scope of the TTRP instance.

The utility Uk(x) accrued from train k is calculated as a weighted average across the set Jk

of timetabled events for train k within the area and time horizon modelled:

Uk(x) =
∑
j∈Jk

βj
kU

j
k(x). (2)

Each event j ∈ Jk in the timetable for train k corresponds to a particular part of the track, and

a time that train k is due to enter it. These can include arrival events at platforms and passing

events at junctions or key points along a route. The values of βj
k ensure that more important

events, such as an arrival into a major station or exiting the modelled area, are weighted more

highly than events at minor stations. When alternative platforms are available, these are separate

events j ∈ Jk. For events j at platforms other than the originally scheduled platform, βj
k is 0.9

times the weight at the originally scheduled platform. This discourages platform changes.

The e�ciency E(x) of a set of solutions x = (xi : i ∈ I) to the whole set of instances I
can be calculated by summing the individual e�ciency of each solution. Denoting the e�ciency

function U when applied to each instance i as Ui, this can be written as

E(x) =
∑
i∈I

Ui(x
i). (3)

2.2 Fairness

For a given instance, let the set of operators be O, and let Ko ⊂ K be the set of trains that are

operated by operator o. The e�ciency function U(x) can be rewritten as

U(x) =
∑
o∈O

Uo(x), (4)

where

Uo(x) =
∑

k∈K1∩Ko

Uk(x) + w
∑

k∈K2∩Ko

Uk(x) (5)

is the part of the e�ciency arising from trains operated by o. Since Uo(x) includes only trains

from operator o, it can be used to measure the utility of operator o.
The utilities Uo(x) are di�cult to compare because there might be di�erent numbers of trains

with di�erent weights in the instance. For each operator o ∈ O, let x∗o be an optimal solution

TRISTAN XI Symposium An evaluation of the fairness of railway timetable rescheduling



E. Reynolds, M. Ehrgott and J.Y.T. Wang 3

when the objective is to maximise Uo(x), rather the total utility U(x) over all operators. Each
solution x∗o represents the best solution operator o can hope for, and Uo(x

∗
o) provides an upper

bound for Uo(x). This allows us to calculate a normalised utility for each operator

Ûo(x) =
Uo(x)

Uo(x∗o)
. (6)

These values can be compared between operators. A value of Ûo(x) = 1 indicates that

operator o realises their maximum possible utility in the rescheduled solution x � all events for

all trains are due to be carried out on time and as planned. Conversely, Ûo(x) < 1 indicates that
one or more events have been cancelled or rescheduled to occur on a di�erent platform, or late.

A social welfare function (such as α-fairness, Atkinson (1970)) could be applied to the set of

utilities {Ûo(x) : o ∈ O} to measure the fairness of the solution x for a single instance. This would
allow fairness to be formulated as an objective function so that fairness-maximising solutions to

individual instances could be computed to solve the TTRP. It would also open the possibility

of using multi-criteria methods to balance the objectives of maximising fairness and maximising

e�ciency within each instance.

However, when considering operator fairness for timetable rescheduling, it is problematic to

focus on single hour-long instances separately. This is because operators experience fairness and

unfairness over a much longer period of time. The operation of a TTRP algorithm on a railway

is likely to involve solving hundreds of di�erent instances, involving repeated allocations of track

capacity between the same sets of operators. Instead, it is much more appropriate to consider

many consecutive instances of the problem as a single, combined allocation problem. That is the

approach taken in this paper.

Considering fairness over a whole instance set rather than on an individual instance basis

has important implications for fairness. It means that each individual instance need not be fair,

provided any operators that loose out can be compensated in other instances. This is crucial

when one considers that a typical TTRP instance considers changes to the timetable over a time

horizon of only one hour. Many instances involve only a small number of decisions such as which

train should go ahead of the other out of a pair of con�icting trains. It may be impossible to

resolve such problems in a fair way, or doing so may require a large degradation in e�ciency.

Our approach of considering fairness over the whole instance set overcomes this issue.

Consider a set of solutions x = (xi : i ∈ I) to a set of instances i ∈ I. We index the

previous notation by i so that Oi, Ui,o, Ûi,o and xi,∗o correspond to the notation O,Uo, Ûo and x∗o,
respectively, when applied to each instance i. Note that the set of operators Oi can be di�erent

across instances.

The normalised aggregated utility for operator o over I can be calculated as

Ûo(x) =

∑
i∈I:o∈Oi

Uo,i(x
i)∑

i∈I:o∈Oi

Uo,i(x
i,∗
o )

. (7)

These values are then used in the α-fairness welfare function to produce our measure of fairness:

Fα(x) =


∑
o∈O

Ûo(x)
1−α

1− α
α ≥ 0, α ̸= 1∑

o∈O
log Ûo(x) α = 1.

(8)

3 RESULTS

An area of railway around Doncaster station has been used as a case study for evaluating fairness.

De�nitions of any railway signalling terminology used below can be found in (Reynolds et al.,
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2020). Doncaster station lies on the East Coast Main Line, a busy railway corridor connecting

London with Leeds, York, Newcastle and Edinburgh. The wider area covered also contains

portions of four double track lines that all begin at Doncaster and go towards She�eld, Lincoln,

Leeds and Hull, respectively. The area lies within a single area of signalling control, and contains

225 berths with 313 valid berth transitions. The station itself has 9 platforms and 85 track

circuits. Doncaster station is an important interchange for a variety of inter-city and local

services operated by seven di�erent operators. It is also a busy bottleneck, with over 30 trains

per hour at peak times. This makes it ideal for investigating the interactions between di�erent

operators.

The data for the case study comes from January 2017. Seven di�erent passenger operators run

services through the area during this month. Operators NT and LNER operate 41% respectively

35% of the 10,027 trains in the period. More than 80 % of NT's trains are class 2 and these

trains make up 93% of all class 2 trains. All trains operated by LNER and four other operators

are class 1.

The month of January 2017 is split into 310 non-overlapping hour-long instances of the TTRP

(between 8am and 6pm each day, for 31 days). These instances are created from real historical

data about the timetable, and the tra�c perturbations that actually occurred. The number of

operators running trains in each instance ranges from two to six, with the most common number

being �ve. By using instances that cover a whole month, we are able to understand fairness over

the whole month, rather than on an instance-by-instance basis.

For each of the 310 instances, an e�ciency-maximising solution was calculated using a solving

time limit of 600 seconds. Only 12 instances were not solved to optimality within this time limit.

For these instances, the best solution found during the time limit was selected, which was less

than 1% away from optimality in all cases.

The normed aggregated utility Ûo(x) ranged between 0.996 and 0.999. However, the propor-

tion of instances, where Ûo,i(xi) = 1 was between 41.3 % and 88,9 %. In particular the value of

41.5% for one operator was considerably lower considerably lower than for all other operators,

so that there is inequality in these �gures. We also observed that the α-fairness of the set of
instances is better than that of some individual instances, but on the whole fairer instances are

more numerous than less fair ones.

To understand sources of unfairness we further analysed the pairwise trade-o�s between

operators. We furthermore studied the in�uence of parameter w = 0.4 (see Section 2.1) on

the computation of fairness. To this end, we re-solved all instances twicw, namely with values

w = 0.7 and w = 1 and observed that increasing w increases fairness and decreases e�ciency.

To conclude, we observed that there is unfairness in solutions to the TTRP problem,and that

the value of w has a considerable in�uence on the level of unfairness.
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