
Solving a Simultaneous Behavioral Decision Problem
During Interactions Using Quantum Optimization

J. Urataa,∗

a Department of Civil Engineering, University of Tokyo, Japan
urata@bin.t.u-tokyo.ac.jp
∗ Corresponding author

Extended abstract submitted for presentation at the 11th Triennial Symposium on
Transportation Analysis conference (TRISTAN XI)

June 19-25, 2022, Mauritius Island

January 15, 2022

Keywords: social interaction, quantum computing, behavior simulation

1 PROBLEM STATEMENT

For smooth control of an autonomous vehicle, it is necessary to select acceleration/deceleration/lanes
while considering the interactions with other vehicles. In particular, during merging at a ramp,
vehicles that affect an agent are also affected by other vehicles. The propagation of these vehicle-
vehicle interactions is illustrated in Figure 1. However, simulating the simultaneous selections
made by vehicles during interactions is challenging.

Interaction

Figure 1 – Example: Interaction between vehicles

To solve the problem of simultaneous selection, we must determine the most likely probabil-
ities of all interacting agents from all possible combinations of their choices:

â = argmax
∀z

P (z), (1)

where â, z represent the combination of behavioral choices for all the agents, and P is the
simultaneous probability of the behavioral combination. The number of possible combinations a
is the exponent of the number of alternatives to the number of agents: N

magent

alternative. Hence, the
optimization problem is NP-hard.

In this study, we solve this problem using quantum computing. For this, we formulate the
simultaneous probability during interactions in such a manner that a quantum optimization tech-
nique can be applied. The optimization approach, which can help solve this problem quickly,
enables us to obtain the most likely behavior choice for all the agents. A recently developed quan-
tum computation approach was based on the Ising model. This approach can be reformulated
as a quadratic unconstrained binary optimization (QUBO) with the least possible constraints.
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Our formulations, based on a traditional social interaction model (Brock & Durlauf (2001)), can
be transformed to a QUBO, and consequently, we propose a method to simulate simultaneous
selections when the agents interact with each other.

Some existing activity simulators, for example, CEMDAP (Bhat et al. (2013)), evaluate
interactions amongst a family or a small group. To the best of our knowledge, a longer chain
of interactions has not been evaluated in previous studies. These chains of interactions can be
observed in the vehicle movement on a ramp, two-dimensional choice of pedestrians in public
spaces, and participation decisions during car-sharing, among others. The proposed method
makes it possible to compute many similar phenomena involving social interactions.

2 FORMULATION

Brock & Durlauf (2001) proposed a local interaction model, wherein social utility S is given by

S(ai,a) = −E

∑
j∈ci

Jij(ai − aj)
2

 (2)

where a is a behavioral choice, ci represents agents interacting with the decision-maker i, and
Jij is the weight of the interaction between agents i and j. When the social utility S is added
to the observed utility u of the logit model, the probability of the choice is expressed as

Pi(ai) =
exp (u(ai) + S(ai,a))

exp (u(ai) + S(ai,a)) + exp (u(a′i) + S(a′i, a))
(3)

where a′i 6= ai. In this study, we defined our problem as a binary choice problem. Equivalently,
the numerator of Eq. (3) can be changed to

∏
j∈ci

exp

(
u(ai)

|ci|
− Jij
|ci|

(ai − aj)
2
)

(4)

When a potential function Wij(ai, aj) is defined as

Wij(ai, aj) = exp

(
u(ai)− Jij(ai − aj)

2

|ci|

)
× exp

(
u(aj)− Jji(ai − aj)

2

|cj |

)
, (5)

the simultaneous probability P (a) is

P (a) =
∏
∀i

Pi(ai) =

∏
ij∈B Wij(ai, aj)∑

∀a
∏

ij∈B Wij(ai, aj)
, (6)

where B is a set of interactions among agents, and the denominator represents a normalizing
constant. The maximization of P (a) can be transformed to a QUBO formulation, as follows:

maxa P (a)⇒ maxa
∏
ij∈B

Wij(ai, aj)

⇒ maxa
∑
ij∈B

log (Wij(ai, aj)) = maxa
∑
ij∈B

(
u(ai)− Jij(ai − aj)

2

|ci|
+

u(aj)− Jji(ai − aj)
2

|cj |

)
.(7)

On representing the observed utility u as

u(ai) = aiui1 + (1− ai)ui0 = a2iui1 + (1− a2i )ui0 = (ui1 − ui0)a
2
i + ui0, (8)
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where u(ai = 0) = ui0 and u(ai = 1) = ui1, Eq. (7) becomes

maxa P (a)⇒ maxa
∑
ij∈B

((
ui − Jij
|ci|

− Jji
|cj |

)
a2i +

(
2Jij
|ci|

+
2Jji
|cj |

)
aiaj +

(
uj − Jji
|cj |

− Jij
|ci|

)
a2j

)
,

(9)
where ui = ui1− ui0. Eq. (9) is in the form of a QUBO, and this enables us to obtain a solution
for the optimal choice combination â using a heuristic quantum annealing algorithm.

In general, by formulating it as a QUBO, any problem can be solved using quantum com-
putation. However, quantum annealing is a natural computing mechanism that calculates the
optimal solution using the unrestrained quantum behavior . Therefore, to efficiently solve these
problems, it is desirable to include as few constraints as possible. The problem addressed in this
study is a problem with no constraints; hence, it is a more suitable model to be solved using
quantum computation.

3 NUMERICAL EXAMPLE

The numerical example presented herein verifies that our formulation for the behavioral decision
problem during interactions can be solved using quantum optimization. The interaction network
is considered as a clique network where the utility ui and weight Jij are randomly chosen in
the intervals [-1, 1] and [0, 1], respectively. Considering a binary behavioral choice, simulations
were conducted for different numbers of agents (5, 10, 20, 40, and 100). We used D-wave
Leap, a real-time Quantum Application Environment, to solve the numerical examples. The
quantum processing unit (QPU) used was an Advantage system 1.1 with 5436 working qubits.
We also used the Python packages “dwave.system” and “dimod.” For the simulations with 5, 10,
and 20 agents, we verified that the optimal combinations obtained via quantum annealing are
consistent with the exact solutions obtained by the enumeration of all possible combinations.
This verifies the applicability of quantum optimization for the solution of this type of problem.
Cases involving more than 20 agents cannot be solved by the enumeration method. Table 1 shows
the computation time with respect to the number of agents. Despite the power-law scaling in the
number of possible combinations (2magent), owing to the use of quantum annealing, the difference
in computation time is small, even when the number of agents increases. The number of samples
in Table 1 refers to the number of trials required to solve the problem. The quantum annealing
results are dependent on the initial setting, and hence, several trials are performed before the
selection of the optimal one. Table 2 indicates that the computation time depends on the number
of samples. Figure 2 depicts the distribution of the objective function (energy) and illustrates
that the optimal result can be obtained even if the number of trials is small.

Table 1 – QPU computation time based on number of agents

# of agents time (ms) # of samples
5 8.41 100
10 8.55 100
20 9.45 100
40 12.85 100
100 14.25 100

TRISTAN XI Symposium Original abstract submittal



A. Coauthor, B. Coauthor, C. Coauthor and D. Coauthor 4

Table 2 – QPU computation time based on number of samples

# of agents time (ms) # of samples
40 5.07 50
40 12.85 100
40 25.43 200
40 51.24 400
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Figure 2 – Energy distribution with respect to number of samples

4 CONCLUSION

This paper proposed a method to determine the optimal selection of multi-agent behavior dur-
ing social interactions by using quantum computation. The combination of actions with the
maximum likelihood in a stochastic action selection problem is dependent on the probability
maximization of the simultaneous probability, because of an interaction chain. However, this
problem is NP-hard to compute. This study transformed the simultaneous selection probability
during interactions to a QUBO that can be solved using quantum computation. This makes
it possible to calculate the combination of behaviors that maximize the simultaneous selection
probability. Our numerical calculations demonstrate that an exact solution can be obtained us-
ing quantum annealing. In addition, even in a situation where the number of agents is as large
as 100 (the number of solution candidates is 2100), it is possible to calculate the results quickly
( 15 ms) using the D-wave leap machine.
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