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1 INTRODUCTION

A recent paper in Transportation Science, Stephan et al. (2021), considered the �optimization

of parking lots with the help of mathematical programming� where, for a �xed lot, the goal is

to maximize the number of reachable perpendicular parking spaces. They propose several novel

�ow based models. We describe a new formulation based on composite variables and logic based

Benders decomposition.

2 FORMULATION

Let S denote the set of 1× 1 squares identi�ed by their (i, j) coordinates. Parking spaces have

size 1× 2 or 2× 1 and driving squares must be at least 2× 2 squares wide to allow bidirectional

tra�c �ow (we could use another resolution). We can generate the sets P of all legal parking

tiles and D of all legal driving tiles a priori. Initialize P = D = ∅ and for all (i, j) ∈ S,

� Add p = {(i, j), (i+ 1, j)} to P if p ⊂ S,

� Add p = {(i, j), (i, j + 1)} to P if p ⊂ S, and

� Add d = {(i, j), (i, j + 1), (i+ 1, j), (i+ 1, j + 1)} to D if d ⊂ S.

We have a set F ⊂ D which is the set of driving tiles which must be active; in particular e ∈ D
is the entrance tile. Driving lanes will be wide enough automatically since we only generate

valid driving tiles. We need to �nd a valid packing of tiles into S which maximizes the number

of parking tiles reachable from the entrance, where driving tiles may overlap. To that end we

introduce the following binary variables:

� xp = 1 if tile p ∈ P is active, xp = 0 otherwise;

� yd = 1 if tile d ∈ D is active, yd = 0 otherwise; and

� zs = 1 if square s ∈ S is a driving square, zs = 0 otherwise.

The number of variables is bounded above by 4|S|. It will be useful to de�ne the following

neighbourhoods:

� ND(d ) ⊂ D is the set of driving tiles adjacent to d ∈ D including up to four properly

adjacent tiles, and up to four overlapping tiles:
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∪ = ND(d).

� NP ( p) ⊂ D is the set of up to 4 driving tiles adjacent to p ∈ P :

∨ = NP (p).

The following integer program gives a valid packing of tiles:

max
∑
p∈P

xp (1)

subject to xp ⩽
∑

d∈ND(p)

yd ∀p ∈ P, (2)

zs +
∑

p∈P : s∈ p

xp ⩽ 1 ∀s ∈ S, (3)

yd ⩽ zs ∀d ∈ D, s ∈ d, (4)

yd = 1 ∀d ∈ F. (5)

The objective function, (1), is the number of active parking tiles; (2) ensures that every parking

tile is adjacent to a driving tile; (3) ensures that parking tiles do not overlap driving squares;

(4) forces driving squares; and (5) �xes the set tiles. It is not hard to see that (1 - 5) does not

guarantee each parking tile will be reachable from the entrance. We remedy this by adding logic

based Benders cuts at incumbent nodes of the branch-and-bound tree. While there are several

promising cutting schemes, here we summarize one.

Let (x′, y′, z′) be a feasible incumbent solution to (1 - 5). With special purpose code, we can

�nd the set of all contiguous �regions� of active driving tiles; that is, a partition of the active

driving tiles such that every tile in the region is reachable from every other tile in the region.

If (x′, y′, z′) is optimal and there is only one region, then we are done, since that region must

contain the entrance.

If, on the other hand, there is more than one contiguous region, let R ⊂ D \ {e} be a region

not containing the entrance. Let

ND(R) =
{
d ∈ D : y′d = 0, d ∈ Nd(d

′) for some d′ ∈ R, d ̸⊆ ∪d′∈Rd
′}

denote the set of strict inactive �neighbours� of R. Then ND(R) is a cut set in D separating R
from e. We can add the following Benders feasibility cuts as a lazy constraints:

yd ⩽
∑

d′∈ND(R)

yd′ for all d ∈ R. (6)

The principle di�culties with this formulation are the large number of legal packings, and the

weak LP relaxation of (1 - 5); the main culprit being (3), since all �ve tiles may be partially

active on each square. Advantages, however, include the �exibility of the composite variables,

and the fact that no big M constraints are required.
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3 IMPROVEMENTS

We propose a heuristic which constraints �ow between adjacent driving tiles. Consider the

network (D,A) with A = {(d, d′) : d ∈ D, d′ ∈ ND(d)}. For each d ∈ D \ e we calculate the

shortest distance from d to e in the graph with respect to two sets of arc lengths:

� First with respect to unit lengths, and

� Second, where the length of an arc (d, d′) is penalized by the number of parking tiles

adjacent to d. A promising penalty function is given by 1/|ND(d
′)|.

Then we delete each arc (d, d′) from A unless d′ is at least as close to e as d is with respect to at

least one of the two metrics. For each d ∈ D \ {e} we add the following constraint to (1-5):

yd ⩽
∑

d′∈ND(d):
(d, d′)∈A

yd′ . (7)

The idea is to force the driving tiles to �ow generally closer to the entrance. Unit lengths alone do

not behave well with obstacles or corners, but the penalized metric allows us to deviate to make

room for parking tiles. There is scope to explore more sophisticated heuristics of this nature.

This heuristic achieves the optimal objective value for the instance depicted in Figure 1 of

Stephan et al. (2021) in under a minute. See the �gure below. More detailed computational

experiments are in progress, and will be described in the conference presentation.
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