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1    INTRODUCTION 

The scheduling of daily activities is a complicated process that covers multiple choice dimensions, 

including which activities to perform, as well as the timings, locations, durations, and mode-of-travel 

between activities. Existing studies postulate that individuals derive a utility from traveling and 

performing activities, and they schedule them to maximize the utility (Adler and Ben-Akiva, 1979). 

With such assumption, discrete choice models (DCM) are widely used to reveal the co-impact of 

various factors on individuals’ choice behaviors. Despite their advantages, DCM tend to come short 

of activity scheduling applications, especially with large choice set and under big data context. 

Firstly, DCM require a likelihood function defined over finite alternatives, which is hard to formulate 

given huge choice set comprised of all possible schedule combinations (Pougala, et al., 2021). 

Secondly, DCM provide stochastic estimations based on assumed distributions of random utilities 

and coefficients (in the case of mixed logit models), which limits their performance on big datasets 

with large sample size while few personal information (Krueger, et al. 2021).  

These limitations can be overcome under a ubiquitous data setting where attributes from a whole 

population can be obtained instead of just from a sample. In such a scenario, transferability of a 

model from a sample to a population is no longer necessary and we can eschew random parameters 

to infer individual, fixed parameters. We adopt a deterministic approach based on the inverse 

problem of random utility maximization as a hybrid machine learning/econometric method. The 

approach presents three key advantages compared to conventional DCM: (i) various choice 

dimensions (activity timings, locations, durations, and mode-of-travel) and corresponding 

parameters are modelled jointly; (ii) the model provides higher prediction accuracy compared to 

conventional DCM ; (iii) the model produces an empirical distribution of individual preference that 

can be integrated into optimization models more efficiently than relying only on simulation (e.g. 

Paneque et al., 2021). 

 

2    METHODOLOGY 

Our study focuses on the activity scheduling choices of commuters, which includes choices related 

to work activity, lunch activity, afterwork activity, and trips between them. There are five choice 

dimensions in total and 1,470 possible schedules for each individual (Table 1).  
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Table 1 – Five choice dimensions and alternatives in choice sets 

Time to leave 

home 

Commute 

mode 

Time to have 

lunch 

Lunch  

location 

Time to leave 

workplace 

6:30-7:00 Transit 11:00-11:30 Inside the CBD 17:30-18:00 

7:00-7:30 Driving 11:30-12:00 Outside the CBD 18:00-18:30 

7:30-8:00  12:00-12:30 In workplace 18:30-19:00 

8:00-8:30  12:30-13:00  19:00-19:30 

8:30-9:00  13:00-13:30  19:30-20:00 

9:00-9:30    20:00-20:30 

9:30-10:00    20:30-21:00 

 

In line with the study of Ettema et al. (2007), we divide a whole-day activity schedule into a sequence 

of activities and trips with representative utility functions shown in Eq. (1) – (6), which differs from 

conventional DCM in that each parameter is indexed by individual, e.g. 𝑖. 

𝑉𝑖 = 𝑉𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑇 + 𝑉𝑤𝑜𝑟𝑘,𝑖

𝐴 + 𝑉𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑇 + 𝑉𝑙𝑢𝑛𝑐ℎ,𝑖

𝐴 + 𝑉𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖
𝐴  (1) 

𝑉𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑇 = 𝑡,𝑖𝑡𝑐𝑜𝑚𝑚𝑢𝑡𝑒 + 𝑐,𝑖𝑐𝑐𝑜𝑚𝑚𝑢𝑡𝑒 + 𝑚𝑜𝑑𝑒,𝑖𝑀𝑐𝑜𝑚𝑚𝑢𝑡𝑒 (2) 

𝑉𝑤𝑜𝑟𝑘,𝑖
𝐴 = 𝑤𝑜𝑟𝑘,𝑖

𝑒 𝑆𝐷𝐸𝑤𝑜𝑟𝑘 + 𝑤𝑜𝑟𝑘,𝑖
𝑙 𝑆𝐷𝐿𝑤𝑜𝑟𝑘 + 𝑝𝑙,𝑖𝑃𝐿𝑤𝑜𝑟𝑘 + 𝑑𝑤𝑜𝑟𝑘,𝑖 𝑙𝑛(𝑑𝑤𝑜𝑟𝑘) (3) 

𝑉𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑇 = 𝑡𝑙,𝑖𝑡𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ (4) 

𝑉𝑙𝑢𝑛𝑐ℎ,𝑖
𝐴 = 𝑙𝑢𝑛𝑐ℎ,𝑖

𝑒 𝑆𝐷𝐸𝑙𝑢𝑛𝑐ℎ + 𝑙𝑢𝑛𝑐ℎ,𝑖
𝑙 𝑆𝐷𝐿𝑙𝑢𝑛𝑐ℎ + 𝑘1,𝑖𝐾1𝑙𝑢𝑛𝑐ℎ + 𝑘2,𝑖𝐾2𝑙𝑢𝑛𝑐ℎ (5) 

𝑉𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖
𝐴 = 𝑑𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖 ln(𝑑𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘) + 𝑖𝑛𝑡𝑒𝑟,𝑖 ln(𝑑𝑤𝑜𝑟𝑘) ln(𝑑𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘) (6) 

where 𝑉𝑖  is utility of individual I derived from the whole-day activity schedule; 𝑉𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑇  is 

commute utility, depending on travel time 𝑡𝑐𝑜𝑚𝑚𝑢𝑡𝑒 , travel cost 𝑐𝑐𝑜𝑚𝑚𝑢𝑡𝑒 , and travel mode 

𝑀𝑐𝑜𝑚𝑚𝑢𝑡𝑒 (0 for driving; 1 for public transit); 𝑉𝑤𝑜𝑟𝑘,𝑖
𝐴  is work activity utility, depending on schedule 

deviation (schedule early 𝑆𝐷𝐸𝑤𝑜𝑟𝑘 and schedule delay 𝑆𝐷𝐸𝑤𝑜𝑟𝑘), additional punishment for late for 

work 𝑃𝐿𝑤𝑜𝑟𝑘 , and log-formed work duration 𝑙𝑛(𝑑𝑤𝑜𝑟𝑘); 𝑉𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑇  is the utility of traveling 

between workplace and lunch spot, here we only consider the travel time 𝑡𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ; 𝑉𝑙𝑢𝑛𝑐ℎ,𝑖
𝐴  is 

lunch activity utility, depending on schedule deviation (schedule early 𝑆𝐷𝐸𝑙𝑢𝑛𝑐ℎ and schedule delay 

𝑆𝐷𝐸𝑙𝑢𝑛𝑐ℎ), and lunch spot (𝐾1𝑙𝑢𝑛𝑐ℎ=1 denotes inside the CBD, 𝐾2𝑙𝑢𝑛𝑐ℎ=1 denotes outside the CBD, 

having lunch in workplace is the reference group); 𝑉𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖
𝐴  is afterwork activity utility, here we 

only consider its total duration in log form, ln(𝑑𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘), and an interaction item with work 

duration, ln(𝑑𝑤𝑜𝑟𝑘) ln(𝑑𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘). All these variables can be observed from the data, and 𝑡,𝑖,

𝑐,𝑖, 𝑚𝑜𝑑𝑒,𝑖 , 𝑤𝑜𝑟𝑘.𝑖
𝑒 , 𝑤𝑜𝑟𝑘,𝑖

𝑙 , 𝑝𝑙,𝑖, 𝑑𝑤𝑜𝑟𝑘,𝑖, 𝑡𝑙,𝑖
, 𝑙𝑢𝑛𝑐ℎ,𝑖

𝑒 , 𝑙𝑢𝑛𝑐ℎ,𝑖
𝑙 , 𝑘1,𝑖, 𝑘2,𝑖,𝑑𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖  

, 𝑖𝑛𝑡𝑒𝑟,𝑖  are 14 parameters to be calibrated, as a mixed logit model with deterministic individual 

tastes. Let us call this an Agent-based Mixed Logit (AMXL) model. 

Inverse optimization (IO) is initially used as a machine learning technique to update parameters 

from prior value in traffic assignment or schedule optimization problems (Chow and Recker, 2012; 

Xu, et al., 2018). We develop an original approach based on the concept to estimate the individual 

parameters of the AMXL model. For each schedule alternative j considered by individual I, we add 

a random utility 𝑖𝑗~G(0,1). Moreover, we add a safe boundary 𝑏 (𝑏 ≥ 0) to in case 𝑖𝑗∗ is much 

larger than 𝑖𝑗 (making most of the constraints useless). A proposed range of 𝑏 is [1,3], which is 

between the 75% quantile and 95% quantile of (𝑖𝑗∗ − 𝑖𝑗). The IO problem is defined as follows: 

for a given prior 0 of a schedule utility’s parameter and observed choice 𝑗∗, determine an updated 

 such that 𝑗∗ has the largest utility in the choice set 𝐽 with a safe boundary 𝑏, while minimizing its 

squared 𝐿2 norm from the prior, as shown in Equation (7).  

min  ‖0 − ‖2
2  : 𝑉𝑖𝑗∗ + 𝑖𝑗∗ ≥ 𝑉𝑖𝑗 + 𝑖𝑗 + 𝑏 , ∀𝑗𝑗∗ in 𝐽 (7) 

An additional issue is that we have 1,470 whole-day schedules in the choice set, which is 

infeasible for DCM to converge and quite time-consuming for IO. Hence, we decompose the whole-
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day schedule choice into three inter-related IO problems: commute choice (time to leave home & 

commute mode), lunch choice (time to have lunch & lunch location), and afterwork choice (time to 

leave workplace). By doing this, we reduce the choice set from 1,470 ( 7 × 2 × 5 × 3 × 7 ) 

alternatives, to 14 (7 × 2), 15 (5 × 3), and 7 alternatives respectively, with an additional constraint 

ensuring that the shared parameter 𝑑𝑤𝑜𝑟𝑘,𝑖  should be the same (and hence, jointly estimated). 

Finally, Method of Self-regulated Average (Liu, et al., 2007) is used to smooth the iterative 

convergence to provide stability without solutions flip-flopping. The IO approach is summarized in 

Algorithm 1. 

Algorithm 1. Inverse optimization with random utility for whole-day activity choice  

1. Initialize with 0
1
=[0,0,0,0,0,0,0,0,0,0,0,0,0,0], n=1,b=1, and the stop criteria  > 0 

2. For each individual i, 

a. Get the priori parameter 0_𝑐
𝑛 ,0_𝑙

𝑛 , 0_𝑎
𝑛

 from 0
𝑛

    

b. Solve IO problems: 𝑚𝑖𝑛 ‖0_𝑐
𝑛 − 0_𝑐,𝑖

𝑛 ‖
2

2
 s.t. 𝑉𝑖𝑗∗ + 𝑛𝑖𝑗∗ ≥ 𝑉𝑖𝑗 + 𝑛𝑖𝑗 + 𝑏 , ∀𝑗𝑗∗ in 𝐽𝑐 

𝑚𝑖𝑛 ‖0_𝑙
𝑛 − 0_𝑙,𝑖

𝑛 ‖
2

2
 s.t. 𝑉𝑖𝑗∗ + 𝑛𝑖𝑗∗ ≥ 𝑉𝑖𝑗 + 𝑛𝑖𝑗 + 𝑏 , ∀𝑗𝑗∗ in 𝐽𝑙 

𝑚𝑖𝑛 ‖0_𝑎
𝑛 − 0_𝑎,𝑖

𝑛 ‖
2

2
 s.t. 𝑉𝑖𝑗∗ + 𝑛𝑖𝑗∗ ≥ 𝑉𝑖𝑗 + 𝑛𝑖𝑗 + 𝑏 , ∀𝑗𝑗∗ in 𝐽𝑎 

c. Calculate the mean value of shared parameter 𝑑𝑤𝑜𝑟𝑘 retrieved from three IO solutions 

d. Fixed 𝑑𝑤𝑜𝑟𝑘 and redo step 2b 

e. Combine 0_𝑐,𝑖
𝑛

, 0_𝑙,𝑖
𝑛 , 0_𝑎,𝑖

𝑛
 and output 0,𝑖

𝑛
 

3. Self-regulated Average: set =1.8, =0.3, calculate 0
𝑛+1

 based on 0
𝑛

 and 𝑚𝑒𝑎𝑛(0,𝑖
𝑛 )  

4. If ‖0
𝑛+1 − 0

𝑛‖
2

≤ , stop and output 0,𝑖
𝑛

 , else let n = n+1 and go to step 2 

 

3    SELECT RESULTS 

3.1  Distribution of parameters 
The dataset used in our study contains two-weekday activity information of 26,149 commuters 

working in the CBD of Shanghai (which we assume to be our population), which was collected using 

Shanghai mobile phone data in 2019 (considering data privacy, home location was aggregated into 

500m*500m grids, workplace was aggregated into blocks). The IO algorithm took 28.9 hours to 

converge at the 60th iteration, resulting in calibrated parameters per individual that are not only 

similar with DCM results in signs, but the population distributions of those parameters are 

empirically derived, revealing them to be neither Gumbel nor Normal (Figure 1). This helps 

modelers capture inter-individual heterogeneities when detailed personal information is hard to 

obtain. 

 

Figure 1 – Distribution of calibrated parameters 

3.2  Prediction accuracy 
Figure 2 shows a comparison of prediction accuracy by the multinomial logit model (MNL) and the 

AMXL model. When we predict commuters’ schedule choice on the weekday used to train the 

model,  the AMXL model improves the individual-level accuracy greatly compared with MNL, from 
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1.37% to 47.18%. When we predict on a different weekday using the same population, though the 

individual-level accuracy of AMXL model decreases (since almost all commuters made small 

changes on their whole-day schedule), the aggregated-level accuracy is still high with 61.68% 

compared with 5.21% in MNL. 

 
Figure 2 – Comparison of prediction accuracy by MNL and AMXL 

 

4    DISCUSSION 

The inverse optimization estimation method combined with the AMXL model is an agent-level 

machine learning method that is theoretically consistent with a utility-maximizing mixed logit model 

framework. It provides deterministic estimation at the individual level, which allows modelers to 

capture inter-individual heterogeneities given limited personal information and further integrated 

them into optimization models. The experimental results based on 26,149 samples show that an 

AMXL model can improve the individual-level in-sample accuracy, and the aggregated-level out-

of-sample accuracy. This method is designed for a ubiquitous data set representing a whole 

population which is possible with big data.  Further scenarios analyzing the trade-offs between 

congestion effects, work scheduling policy, and optimal incentives to attract workers to lunch 

locations are conducted. 
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