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1 INTRODUCTION

Tra�c signal control (TSC) designates the use of tra�c lights to achieve two crucial tasks in
urban mobility: optimizing tra�c �ows on a road network while ensuring the safety of its users.
While various classical TSC methods have all aimed at solving these two challenges with di�erent
levels of success and complexity, the use of reinforcement learning (RL) algorithms for TSC, which
�rst appeared in 1992 and has known an exponential rise since the years 2010 (Noaeen et al.,
2021), have also provided excellent results in simulated tra�c conditions.

The reinforcement learning for tra�c signal control (RL-TSC) literature has developed and
improved in recent years: recent advances in the �eld of deep learning has marked a shift from the
use of classical RL algorithms such as Q-learning to more advanced deep reinforcement learning
algorithms such as 3DQN (Greguri¢ et al., 2020) for TSC, notably increasing the performance of
RL-TSC controllers. A common area of research in the RL-TSC literature nowadays is the study
of coordination mechanisms used by the learning agents in multi-intersection road networks,
which can improve the overall performance of RL-TSC systems. These modes of coordination are
usually divided into three groups: independent control, in which intersections do not communicate
with each other, indirect coordination methods, such as MARLIN-IC (El-Tantawy and Abdulhai,
2012), in which intersections model joint state and joint actions with their neighbors through
indirect state observation and direct coordination methods, such as MARLIN-DC (El-Tantawy
and Abdulhai, 2012), in which intersections directly communicate in order to decide on their next
tra�c-routing actions jointly. This paper presents a novel fourth mode of coordination directly
inspired by the tra�c engineering literature known as green wave coordination, in which multiple
intersections maximize the vehicular throughput over an arterial. This extended abstract presents
this novel coordinated RL-TSC method in section 2, before pitting it against a state-of-the-art
RL-TSC method in a simulated setting in section 3. Finally, we conclude and present future
research directions in section 4.
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2 LEARNING AND TRAFFIC SIGNAL CONTROL

2.1 Reinforcement Learning for Tra�c Signal Control

RL tasks for TSC are usually modeled using a Markov decision process (MDP). At each time
step t, the agent (i.e. the intersection) observes the state of the environment st and chooses an
action at. We de�ne the state as st = (φt, dt, ct(l1), . . . , ct(ln)), where φt represents the active
green phase index, dt the duration for which this phase has been active, and ct(li) the amount of
vehicles present in lane li at step t. On the basis of this observation, the intersection chooses an
action at in�uencing the current tra�c signal settings in di�erent ways depending on the RL-TSC
method (see subsection 2.2). After application of the chosen action at, the tra�c environment
transitions to a new state st+1 and returns a reward rt to the agent. The reward of an agent
taking two successive actions at steps t and t + k is de�ned as rt =

∑
li ωt+k(li) −

∑
li ωt(li),

where ωt(li) is the cumulated waiting time of vehicles on lane li at step t,

2.2 Tra�c Signal Control Methods

This paper features two RL-TSC methods based on deep reinforcement learning. The �rst
method, I-2DQN, does not coordinate between agents and is hence an independent method.
This method is both used as a benchmark and as a building block for the second method,
GW-DQN, which features deep reinforcement learning for green wave coordination.

2.2.1 Independent Tra�c Signal Control

The independent dueling deep Q-network (I-2DQN) method is a state-of-the-art RL-TSC method
(Greguri¢ et al., 2020) which leverages modern reinforcement learning techniques. Our I-2DQN
implementation features three fully connected hidden layers of 128 neurons, each associated with
a ReLU recti�er and batch normalization layer, and a �nal double layer used for the computation
of the advantage and value functions A(s, a) and V (s) typically found in dueling networks (Wang
et al., 2016). This method uses experience replay by sampling mini-batches of 32 observations
from a replay bu�er D and uses a target network θT , which is updated every 100 learning steps.
The implemented policy is an ε-greedy policy with a decaying search parameter ε which ensures
a good balance between exploration and exploitation of the problem's state space. Intersections
using I-2DQN choose between step-based actions: at each decision step t, the intersection has to
choose whether to extend the current green phase by a single step (up to a parameter maximum
duration dmax) or to switch to the next green phase within the signal cycle (after a parameter
mandatory amber and red safety phase of duration dmin). Since they do not impose constraints
on the total signal cycle duration, and since they provide a high level of signal control, step-based
actions usually provide, ceteris paribus, superior performances in RL-TSC applications (Tréca
et al., 2020).

2.2.2 Green Wave Coordination

Green wave coordination aims at maximizing the throughput over a major arterial by limiting
the number of stops encountered by vehicles driving alongside it. This green wave phenomenon
is achieved by computing o�sets, which indicates the travel time of a vehicle driving between
each intersection of the arterial in non-saturated tra�c conditions. These o�sets are usually
computed manually using a time-space diagram, as shown on Figure 1. Interestingly, to the best
of our knowledge, green wave coordination has not been applied in the RL-TSC literature.

The green wave dueling deep Q-network (GW-2DQN) method is a novel RL-TSC method
featuring green wave coordination. Each intersection using this method features the same ar-
chitecture as the I-2DQN method, with the exception that it implements phase-based actions.
Phase-based actions, for which an agent chooses the entire length of a green phase at once, are
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Figure 1 � Example Time-Space Diagram on a four intersection arterial. The x-axis represents

time and the y axis distance. The signal cycles of the four intersections are computed so that

green waves, represented by black arrows, can occur in both directions of the arterial.

needed to maintain proper o�sets between signal cycles of the intersections along the arterial
and allow for a green wave to occur. The signal cycle's duration, D, is divided between the green
phase duration over the arterial d1 and perpendicular to the arterial, d2, and two mandatory
amber and red phases of �xed duration dmin. Each intersection implementing the GW-DQN
method hence has to pick a single action per signal cycle: the duration of green phase d1, which
can range between dmin and D − 3dmin, respectively the minimal green phase duration, and the
maximal allowable phase duration which ensures that phase d2 receives the required minimal
phase duration. After choosing duration d1, duration d2 is automatically computed to �ll up the
entire signal cycle of total duration D.

The GW-DQN method is straightforward to implement since the only requirement is to main-
tain o�sets between intersections of the arterial, which can easily be expressed as an additional
set of constraints on action selection, regardless of the underlying RL method. Furthermore,
the GW-DQN method represents a trade-o� due to these additional constraints. On the one
hand, using phase-based actions allows for green wave coordination, maximizing throughput
over the arterial. On the other hand, using a phase-based action space reduces the adaptability
of intersection to changing tra�c conditions due to longer decision intervals, decreasing agent
performance in the process (Tréca et al., 2020). Tra�c simulations in section 3 comparing the
I-2DQN and GW-2DQN methods should indicate which factors are more prominent.

3 EXPERIMENTAL RESULTS

3.1 Experimental Settings

We run our experiments on the SUMO tra�c simulator and the carmulator RL-TSC library we
have developed. The two methods are tested on a 4-intersection arterial road network. We use
signal cycle values of D = 60 and dmin = 5. Green wave o�sets are automatically computed by
SUMO. Tra�c is generated using a Poisson arrival process of parameter λu,v for each entry and
exit lane pair (u, v) of the network. The base value of parameter λu,v is doubled if the entry lane
u is located on the arterial or if the exit lane v is located on the arterial, and tripled if both u
and v are located on the arterial, which promotes larger tra�c �ows on the main arterial while
maintaining tra�c �ows on alternative routes.

3.2 Agent Performance

We measure the performance of both methods after their training process of 500 simulation
episodes of 1000 steps each. These performances are measured by running 20 tra�c scenarios,
each using distinct tra�c demand patterns, and by measuring the performance spectrum of each
method by plotting the worst and best vehicular cumulated waiting time evolution throughout
the simulation scenario. These performance measurements are plotted in two cases: normal tra�c
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conditions, using a near-saturating base arrival rate of λ = 0.06 (around 216 vehicles/hour) and
saturated tra�c conditions using a base arrival rate of λ = 0.08 (around 288 vehicles/hour), in
order to observe how both methods fare in these scenarios.
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Figure 2 � Performance spectrum of the I-2DQN and GW-2DQN methods in normal (left) and

saturated (right) tra�c conditions.

Results show that the GW-2DQN method outperforms the I-2DQN method in terms of
average and variance in cumulated waiting time in normal tra�c conditions, showing that green
wave coordination on arterials using deep reinforcement learning is bene�cial for TSC. However,
this relative superiority is entirely reversed when tra�c conditions are saturated since the GW-
2DQN performance drops signi�cantly in the second experiment.

4 DISCUSSION AND FUTURE WORKS

This paper proposes a novel green-wave-based approach for a deep RL-TSC. The results show
that the method outperforms I-2QN but underline the somewhat fragile nature of green wave
coordination. If the GW-2DQN method allows for increased performance gains with minimal
overhead in terms of complexity, these gains only hold if the green wave phenomenon can occur,
implying that no tra�c congestion is present along the arterial. Since this condition is not likely
to be constantly veri�ed in real-life scenarios, a hybrid RL-TSC method that could automatically
switch between I-2DQN and GW-2DQN depending on congestion levels along an arterial could
o�er the best of both worlds. Such a mechanism could easily be constructed using vehicular
congestion values along the arterial lanes, which are already used as a state feature of both RL
algorithms.
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