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1 INTRODUCTION

Public transport companies are under pressure to reduce operational costs and increase the
number of passengers and revenue. The design of the tariff system has been proven valuable to
impact revenues in public transportation. There exist different tariff systems in public transport
(Schöbel & Urban, 2020). This paper studies the zoning and pricing problem to maximize
expected revenue (R) through a counting zones tariff system. The literature on combining zoning
and pricing problems is scarce. Thus, we contribute to this literature by a new mixed-integer
programming (MIP) model and a MIP-based heuristic method to solve the revenue maximizing
tariff zone problem (RMTZP), yielding a counting zones tariff system. It is assumed that (i) the
price per zone takes denumerable values, (ii) the number of public transport trips depends on
the price (system), and (iii) public transport passengers always choose the time-shortest path.
Our new model formulation is: (1) flexible to adjust to any objective function; (2) not limited to
a predefined number of tariff zones; we impose contiguity of the tariff zones using the properties
of primal and dual graphs, (3) coming with a new set of constraints that ensures contiguity
and forces tariff zones to a desired spatial pattern (rings or stripes) without altering the model
structure; (4) able to optimally solve instances of up to 120 districts (stops) within reasonable
time using off-the-shelf solvers.

2 Modeling

We consider a public transport graph GPT : (I,A, τij) with nodes i ∈ I, arcs (i, j) ∈ A, and
travel time τij . The set of nodes I represents the public transport stops and the set of arcs A
indicates the public transport connections between adjacent nodes (gray arcs and nodes, Figure
1). We impose contiguity of each tariff zone using the properties of primal and dual graphs
(Validi et al., 2020). We assume that each stop is located in a unique (artificial) district. Let
GBO : (N ,B) be the district border graph, with nodes N and arcs B. Here, we consider GBO

as the dual to GPT. The problem includes a set Sij that contains the arcs that belong to the
time-shortest path through GPT of each origin-destination (O-D) tuple from i ∈ I to j ∈ I. Due
to the properties of planar dual graphs, for each arc (i, j) ∈ A there exist two intersecting arcs
((n,m), (m,n)) ∈ B. Let us define set Dij denoting the border arcs (n,m) corresponding to
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Figure 1 – Graphs of the RMTZP. Note, GBO contains more nodes than necessary for a dual graph.
GBO is shown in blue while GPT is displayed in light gray. Shortest path from stop (district) i1 to
stop (district) i6 is highlighted in green. Assume t=2 tariff zones are optimal for O-D tuple i1-i6
(Xi1,i6,2=1) and the tariff zone border is between node i2 and i5, then Yn4,n5+Yn5,n4=1. This in
turn induces and artificial flow along the border arcs to ensure contiguous zones (red).

(i, j) ∈ A. Now, let us define the set ODij containing the border arcs along the time-shortest
path from i ∈ I to j ∈ I.
Following, we summarize the variables and constraints of our MIP model P1 to solve RMTZP:

Parameters

Tij : Maximum number of tariff zones along the shortest path from i ∈ I to j ∈ I (Tij ≤| Sij |+1)

rijt (πpt) : Expected revenue if t = 1, . . . , Tij tariff zones are visited on the shortest path from i ∈ I to j ∈ I
and given price per zone πpt.

an : Feasible node degree of the border node n ∈ N

bn : Amount of artificial outflow or inflow at border node n ∈ N

u : Total sum of outflows over all border nodes n ∈ N (u =
∑

n|bn≥0 bn)

Decision variables

Xijt = 1, if t = 1, . . . , Tij tariff zones are visited on the shortest path from i ∈ I to j ∈ I (0, otherwise),
with Tij as the maximum number of tariff zones along the shortest path from i to j

Ynm = 1, if a tariff zone border is established along border arc (n,m)∈ B (0, otherwise)

Wnm = 1, if there is a flow along the border arc (n,m) ∈ B (0, otherwise)

Maximize R(p) =
∑
i∈I

∑
j∈I

Tij∑
t=1

rijt(πpt) ·Xijt (1)

subject to

Tij∑
t=1

Xijt = 1 ∀ i ∈ I, j ∈ I (2)

Tij∑
t=1

t ·Xijt −
∑

(n,m)∈ODij

Yn,m = 1 ∀ i ∈ I, j ∈ I (3)

Wnm −Wmn = Ynm ∀ (n,m) ∈ B | n < m (4)∑
m∈B

Wnm −
∑
m∈B

Wmn = bn ∀ n ∈ N (5)∑
m∈B

Wnm +
∑
m∈B

Wmn ≤ an ∀ n ∈ N (6)

Xijt ∈ {0, 1} ∀ i ∈ I, j ∈ I, t = 1, ..., Tij (7)
Ynm ∈ {0, 1} ∀ (n,m) ∈ B (8)
Wnm ∈ {0, 1} ∀ (n,m) ∈ B (9)
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The objective (1) maximizes the total expected revenue in the service area for a given price
system p ∈ P. Constraints (2) select the number of tariff zones visited for each O-D tuple.
Constraints (3) couples the number of tariff zone t ·Xijt and the number of tariff zone borders
Ynm along the shortest path from i ∈ I to j ∈ I. The number of tariff zones visited from stop
i to stop j is equal to 1 plus the number of tariff borders crossed along the shortest path from
i to j. Equations (4) couple of Ynm and Wnm. If a tariff zone border is established between
adjacent stops i and j, i.e., Ynm =1 with (n,m) ∈ Dij , then there is a flow Wnm ∈ {0, 1} along
(n,m) ∈ B. Equations (5) are flow constraints that indicate outflow minus inflow must be equal
to bn at border node n ∈ N . Values of bn depend on the desired spatial pattern of the tariff
zone. The ring pattern occurs when bn=0 and an=2, and a striped pattern bn ≥ 1 and an=2.
Additionally, the stripe pattern is enforced by establishing a set of nodes n ∈ N as the source
nodes of the artificial flow and another set of nodes n ∈ N as the sink nodes for the artificial flow.
The flow conservation constraints (5) ensure contiguous tariff zones. Constraints (6) control the
number of adjacent tariff zones at node n. Finally, the domains of the variables are given by (7),
(7), and (9).

Relaxation of RMTZP: The size of the RMTZP is mainly influenced by the number of O-D
tuples. The expected R for each O-D tuple can be computed given a pricing system and a
maximum number of tariff zones. We declare a subset C which contains γ· | I | of O-D tuples
with highest R; where γ ≥ 1 and determines the size of the subset C. We propose a MIP-based
heuristic to find C. Then, the model P1 is solved by considering O-D tuples ∈ C instead of all
i ∈ I and j ∈ I.
Price problem: The zone problem P1 depends on a given price system p ∈ P. The trip price
under a counting zone tariff system depends on the visited zones along the trip and the price per
zone. Let rijt(πpt) represent the R on the shortest path from i ∈ I to j ∈ I given price system
p ∈ P, with πpt as the price per zone when visiting t zones under price system pt ∈ P. R in
P1 is given by Equation (1). Therefore, we solve | P | independent zoning problems, select the
solution with maximum R, and benchmark these solutions against the optimal solutions of the
RMTZP.

3 Computational experiments

In this section, we present the design of computational experiments and results. We evaluate the
performance of the MIP model and our MIP-based heuristic under different problem sets. The
performance is evaluated in terms of R and CPU time. We generate a set of artificial instances
representing the service area of a city. Total demand depends on the number of inhabitants at
each zone i, defined as a uniform [10,000; 20,000]. The total number of trips from i to j follows
a gravity model, while public transport shares follow a multinomial logit model.

3.1 Comparison of the MIP-based heuristic against the MIP model

We solve all problem sets to optimality and compare the MIP model against the MIP-based
heuristic, considering the constraints to enforce tariff zones to have a ring pattern. Problem sets
consider different realistic sizes of | I |= {49, 81, 121}, | Tij |=7, and | P |=10, and a network
connectivity level given by {0.25, 0.5, 0.75, 1}. The larger the network connectivity level the
larger is | A | for given | I |.

Table 1 shows R of the solution obtained with MIP model and MIP-based heuristic over 10
seeds, and γ over the values { 2, 4, 8, 10, 15, 20, 25, 30}. Our first results show that the MIP
model provides a solution with higher R than the MIP-based heuristic solution. On average, our
MIP-based heuristic under estimates the optimal R by 2.54% but it is faster by 42.97%.

3.2 Impact of enforcing a desired spatial pattern

This section is devoted to determine the impact of enforced spatial patterns on R. This numerical
study is focused on the MIP model P1 and the instance with | I |= 49. We determine the solution
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MIP MIP-based heuristic

I
Expected revenue

10000 monetary units
(a)⋆

CPU time
seconds

(b)⋆

Expected revenue
10000 monetary units

(c)⋆

CPU time
seconds

(d)

Gap
(a) vs (c)

Gap
(b) vs (d)

49 1855.93 104.41 1846.85 117.15 0.48 -16.05
81 1939.49 4087.39 1899.39 570.80 2.06 87.47
121 2012.58 386384.54 1911.02 175053.97 5.08 57.48

Average 2.54 42.97

Table 1 – Comparison of R and CPU time of the MIP-based heuristic with respect to the optimal
solution. All problems are solved to optimality. (⋆) Average values over all seeds and network
connectivity levels

Ring pattern No pattern

an
R

(10000 monetary units)
CPU time
(seconds)

R
(10000 monetary units)

CPU time
(seconds)

2 1965.36 125.76 1977.92 10559.98
3 1965.36 1639.02 1977.92 9051.35
4 1989.42 3308.62 1992.07 12980.14

Table 2 – Average R of the MIP model varying: constraints to enforce a ring pattern, and values
of an.

for different values of border node degree an given by {2, 3, 4}. The value of an indicates the
maximum number of adjacent tariff zones that gather at a district border node n ∈ N . Table
2 shows the average R and CPU times of solutions with and without a ring pattern. Results
demonstrate that solutions with a lower R are obtained when constraints are included to enforce
a desired spatial pattern compared to cases with no desired pattern. Solutions without any
spatial pattern have an R that is on average 0.43% higher than solutions with a ring pattern.
The CPU time for the solutions with no spatial pattern is 85.12% higher than for solutions with
the ring pattern.

4 Conclusion

In this paper, we investigate how to design a counting zones tariff system to maximize the
revenues of public transportation service companies. The price for a trip depends on the price
per tariff zone and the number of visited zones. This approach is well-known and accepted by
passengers and practitioners. We design an MIP model and an MIP-based heuristic to design
an optimal counting zones tariff system and solve the price problem. Our approach is based on
the properties of dual and primal graphs enabling contiguity of tariff zones and enforce spatial
patterns of the zones. The proposed methods can solve instances of reasonable sizes. Our
approach is flexible enough to enforce the counting zones tariff system to any spatial pattern.
The results show that enforcing tariff zones to a specif spatial pattern reduces R and CPU time.

Currently, we are working on testing our MIP-based heuristic with real data from the San
Francisco Bay Area with 1,415 districts (i.e., stops). Due to the irregular shape of the San
Francisco Bay Area, we are interested in studying how to enforce tariff zones to follow a desired
spatial pattern. In addition, we plan to analyze price systems with discounts.
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