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1 Introduction

Electric vehicles (EV) are a promising alternative to conventional cars to decarbonize the trans-
portation sector, but the well-known range anxiety and the newer charge anxiety, caused by
unreliable and insufficient public charging infrastructure, are hindering its adoption in the pri-
vate market. A seamless charging experience may however reduce these anxieties if drivers can
easily find and use an available charging station. In practice, existing commercial services help
drivers to find available stations based on real-time availability data but struggle with data in-
accuracy, e.g., due to conventional vehicles blocking the access to public charging stations. In
this context, recent works have studied stochastic search methods that account for charging sta-
tion availability uncertainty and can be embedded into today’s navigation devices (cf. Guillet
et al. , 2022). Such methods consider charging stations as stochastic resources and aim to find
a sequence of charging station visits – a search path – that minimizes the expected search cost
to reach an available station. So far, however, both practical and theoretical approaches ignore
driver coordination enabled by charging requests centralization or sharing of data, e.g., observa-
tions of charging stations’ availability status or visit intentions between drivers. With this work,
we close this research gap by extending stochastic single-agent search algorithms to a stochastic
multi-agent setting.

Related work on resources search problems with stochastic availability focus on a single-agent
setting (cf. Guo & Wolfson, 2018, Arndt et al. , 2016, Schmoll & Schubert, 2018, Guillet et al.
, 2022), whereas multi-agent settings mostly study cooperative and synchronous resource search
problems with unknown resource locations (cf. Bourgault et al. , 2003, Wong et al. , 2005, Chung
& Burdick, 2008, Dai & Sartoretti, 2020). In contrast, we focus on a non-adversarial multi-agent
search problem, with stochastic charging station availability, where multiple EV drivers request to
find an unoccupied charging station in their vicinity at the earliest possible time. Practically, each
driver may either receive a full sequence of stations to visit until an available station is reached
(static planning) or may receive the next station to visit (dynamic planning), recommended
by her navigation device, that synchronizes with a central navigation service platform in both
cases. The solution planning can be (i) centralized within the navigation service platform or
(ii) decentralized, i.e., at agent-level. In the latter case, solution planning can happen directly
within the local navigation device and devices use the platform only to share information with
each other. In both cases, drivers may share their station occupancy observations intermittently
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Table 1 – Problem settings overview

information-sharing settings characteristics

visit intentions availability
observations

path
planning

decision-
making

type user-dependent
solutions

DEC static decentralized selfish no
DEC-I X static decentralized collaborative no
DEC-O X static decentralized informative no
DEC-IO X X static decentralized collaborative no

CEN X X dynamic centralized collaborative yes
DEC-O-d X dynamic decentralized informative yes

or in real-time with the central platform. In the decentralized case, they may additionally share
the planned charging station visits. To capture these varying characteristics which are of practical
relevance, we introduce the following settings as summarized in Table 1, where the DEC setting
corresponds to the baseline setting with uncoordinated searches.

The contribution of this work is three-fold. First, we model the underlying decision-making
problem as a single decision-maker Markov Decision Process. Second, we present several online
solution methods that allow to solve the settings introduced in Table 1 (i.e, with unknown
requests). Third, we conduct extensive numerical studies based on real-world instances to analyze
which coordination strategy yields the highest improvement potential from a system and a driver
perspective.

2 Methodology

Markov Decision Process: In the following, we first consider a centralized representation
of the system states and represent the (offline) multi-agent search with an omniscient single
decision-maker as a finite-horizon MDP.

An agent triggers a new decision epoch either by requesting to charge her vehicle or by
observing a new station. We refer to the requesting or observing agent as the deciding agent
denoted with λ. We represent a system state x ∈ X out of state space X as x = ( ~xd,J , T ,O) ,
with J being the set of active agents, T being the set of successfully terminated agents, O being
the set of all visited stations and ~xd = (xi)∀i∈J

⋃
T being the vector that describes the state of

each agent. Here, we define an agent’s state xi as xi = (vi, ti, si) with vi ∈ V being the station
assigned to agent i in state x; ti being the arrival time at vi and si ∈ {’d’, ’f’, ’t’, ’r’} being the
status of the agent: an agent can either (i) be en-route to the station (si = ’r’), unaware of
vi’s realized availability, (ii) observe vi to be available, which successfully terminates her search
(si = ’f’), (iii) observe vi to be occupied and has enough time to reach a new station (si = ’d’)
or (iv) not (si = ’t’), which unsuccessfully terminates her search. The observation of vi in (ii)
and (iii) triggers a new decision epoch.

We denote with u ∈ U(x), the action taken in state x for agent λ. We let d(x, u) be the
cost immediately induced by taking decision u in state x, which does not depend on any future
uncertainty realization. We refer to state x as xs if the station observed by λ is available: here,
λ has successfully terminated its search and d(x, u) corresponds to the cost for using the station.
We refer to state x as xf if λ observes an occupied station or begins her search. Here, d(x, u)
corresponds to the penalty cost if no station can be reached within λ’s remaining time budget,
or in the opposite case to the driving time to the newly selected station. We define a policy π
as the state-action mapping function, such that π(x) ∈ U(x).

From state x, the system transitions to the next state x́ upon a single-agent action, with λ́
being the new deciding agent. The new state x́ can either be a successful state x́s for λ́ with
probability pv́ (that station v́ is available) or an unsuccessful state x́f with probability 1 − pv́.
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We introduce the policy-specific cost function V π(x), that can be expressed as follows

V π(x) = d(x, π(x)) + pv́V
π(x́s) + (1− pv́)V π(x́f), (1)

with x ∈ {xs, xf}. Then, our objective is to find a policy π that minimizes the expected cost
value α = V π(x0), with x0 being the initial state.
Algorithmic framework: We develop online algorithms to process sequentially revealed charg-
ing requests, i.e, the set of agents D is initially empty and we update D each time a new charging
request enters the system. Figure 1 describes both decentralized decision-making, i.e., agent-level
information-sharing and planning, and centralized decision-making, i.e., system-level planning.

For decentralized decision-making settings, we plan each agent’s search path using a modified
version of the stochastic search algorithm developed in Guillet et al. (2022), denoted with HLH
in its basic variant. To avoid the selfish use of shared visit intentions, we introduce the algorithm
variant HLH-c, in which agents minimize their search times without compromising other agents’
success. For static policy planning (i.e., DEC, DEC-I, DEC-O, DEC-IO), we compute an agent’s
search path only once, accounting for the latest available information, i.e., the latest shared visit
intentions or the latest availability observations, according to the solved setting. For dynamic
policy planning (i.e., in DEC-O-d), we re-compute the initially planned search path each time
the agent visits an occupied station, using the latest observations shared by the agents.

For a centralized decision-making setting (i.e., CEN), we focus on dynamic policy planning
and dynamically solve the large-scale MDP (with unknown requests), by using two different
algorithms. The first algorithm is a rollout algorithm (RO) with a one-step decision rule as
described in Goodson et al. (2017), which explores the MDP solution tree partially, using a
base-policy to approximate the value of the policy-specific function. In each state, the algorithm
selects the action that yields the lowest approximated cost. The second algorithm bases on a
dynamic implementation of our HLH-c algorithm. Instead of selecting the next best station
visit based on a partial MDP solution tree exploration, this algorithm (re)computes an agent’s
individual search path using the latest observations and visit intentions available at each decision
step. We then use the first station visit of the recomputed search path as the next station visit.
We refer to this algorithm as LH-RO and note that it combines dynamic and offline planning
similar to the work of Ulmer et al. (2019).

3 Numerical results and conclusion

We analyze the benefits of coordination between multiple agent’s searches using an extensive
case-study for the city of Berlin. We vary the radius of the departure area rs ∈ {100, 300, 700}
meters for a total number of N ∈ {2, ..., 10} drivers, and consider two different driver search

Figure 1 – Online Algorithmic Framework
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radii of S̄ = 1 km and S̄ = 2 km. We equally distribute the drivers’ search start time within a
varying time horizon ts ∈ {0, 1, 5, 15} min, and let the search time budget be T̄ = 5 min for all
drivers.

Our results show that coordination increases the system performance while individually ben-
efiting each driver in general. Specifically, a centralized coordination strategy can decrease the
system cost by 28%, and a static decentralized coordination strategy already achieves a 26%
cost decrease if visit intentions are shared. In a decentralized setting with intention-sharing,
observation-sharing does not increase the system’s performance further for the analyzed plan-
ning horizon, but enforcing drivers’ collaboration is required when drivers depart within a short
time span. While a decentralized setting with only observation-sharing performs worse than
intention-sharing settings, it provides a computationally efficient implementation in practice.
When implemented in a dynamic setting, it yields a 10% cost decrease when drivers depart
within a short time span, but achieves a 26% cost decrease with larger departure horizons. From
a driver-perspective, coordination may save up to 23% of a driver’s search time, while increasing
her search reliability. Additionally, our results show that a coordinated search dominates unco-
ordinated searches, with respect to both best and worst solutions that an individual driver may
obtain. Figure 2 shows the average relative individual time savings and absolute success rate
increase for each coordinated setting compared to the uncoordinated setting DEC.
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Figure 2 – Benefits of coordination from a driver-perspective

Subfigure (a) shows the average search time deviation ∆trel, while Subfigure (b) shows the average success rate deviation

∆ρ. Values are aggregated over all instances and computed as follows: ∆trel = 1
n
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i
setting), with n being the number of drivers considered in the respective instance.
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