
TRISTAN XI Symposium  Original abstract submittal 

 

 

A Data-Driven Routing and Scheduling Approach for Activity-Based 
Freight Transport Modelling 

Ali Nadia,*, Neil Yorke-Smithb, J.W.C Van Linta, Lóránt Tavasszya, Maaike Sneldera,c  

a Department of Transport and Planning, TU Delft, Delft, The Netherlands 
a.nadinajafabadi@tudelft.nl, J.W.C.vanLint@tudelft.nl, L.A.Tavasszy@tudelft.nl  

b Electrical Engineering, Mathematics and Computer Science, TU Delft, Delft, The Netherlands 
N.Yorke-Smith@tudelft.nl  

c TNO, Den Haag, The Netherlands 
M.Snelder@tudelft.nl  

* Corresponding author 

Extended abstract submitted for presentation at the 11th Triennial Symposium on  
Transportation Analysis conference (TRISTAN XI) 

June 19-25, 2022, Mauritius Island 
 
 
 

Keywords: Activity-Based Freight Modelling, Baysian Optimization, Data-Driven Vehicle 
Routing Problem  
 

1     INTRODUCTION 
 
Truck flow patterns can best be understood through the study of freight activities on a transportation 
network (Tavasszy and De Jong, 2013). These activities are often observable after the execution of 
tours resulting from a routing and scheduling optimization process, where the traditional Capacitated 
Vehicle Routing Problem (CVRP) is used to minimize multiple objectives under spatial, temporal, 
and vehicle constraints. Researchers have put forward in recent years that there should be 
distinctions between freight and passenger transport modelling due to the complexity associated 
with logistics (Gonzalez-Calderon and Holguín-Veras, 2019). The most important distinction is to 
involve the tour behaviour of carriers considering all spatial and temporal constraints (You et al., 
2016). In current tour-based models, tours are constructed through incremental trip chaining in such 
a way that the next destination in a tour is estimated based on the conditional probability of the 
current stop. These types of models are based on choice modelling and provide statistical agencies 
with descriptive statistics and insights into freight demand. However, discrete choice methods are 
not subject to constraints and therefore cannot capture spatial-temporal characteristics of tours 
(Heinitz and Liedtke, 2010). Additionally, trip chaining decisions are made once at the tactical level 
and hence incremental reconstruction of the tour at the operational level is not identical to the tour 
planning process in reality.  
To deal with this problem, micro-simulations have used a family of vehicle routing problems to 
model the pickup and delivery of carriers within a multi-agent microsimulation framework 
(Donnelly et al., 2010). Although normative models can perfectly capture space-time constraints, 
their outcome could deviate from observed tours due to heterogeneity in the tour planning decisions 
of planners. Hence, You et al. (2016) proposed an inverse optimization approach to calibrate a family 
of VRP using the method of successive averages. They estimate the weights of a weighted sum of 
multiple objectives from a set of observed tours. Parameter estimation of these methods requires 
fully observed truck movement patterns. However, tour data, if available, are often partially 
available to traffic agencies and policymakers due to privacy issues. To the best of our knowledge, 
the development of a method to calibrate the VRP model based on shipment flows with partially 
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observed tour data has not yet been explored and is therefore of interest . To address this gap in the 
literature, we propose an efficient Bayesian optimization method to calibrate a VRP model based on 
partially observed tour information.  

 

2     Activity-Based Freight Tour Modelling Framework 
In this paper, we propose a disaggregate simulation-based optimization framework to model tour 
activities. In this framework, we begin with the available goods for pickup or delivery at each traffic 
analysis zone for each carrier. This could come from a freight generation model or available 
shipment flow data. Then, for all carriers, we simulate a parametrized capacitated vehicle routing 
problem so that all the available goods in the network are transported at the end of the planning 
horizon (e.g., one day). Afterwards, the planned tours are decomposed into trips and all trip 
characteristics are derived. The parameters of the model are updated through a surrogate-based 
optimization technique to minimize the difference between estimated and observed tour 
characteristics, such as the total tour travel times, travel costs, departure times, and arrival times. To 
solve this problem, we define a general approximation of the various type of VRPs with a weighted 
(β) sum of objectives Z in Equation 1: 
    min

x
zβ൫xij

m൯=min ∑ βlzl=β
TZL

l=1               (1) 

where 𝑥௜௝
௠ is the binary route decision variable where its elements are 1 if a vehicle visits location j 

after i in time interval m.  Depending on the available data and the aim of the study, the modeller 
can define various objectives for the calibration. In this study, we only use capacity constraints for 
the VRP formulation. We adopted a compact form of a standard three-index formulation of the 
pickup and delivery problem proposed by Furtado et al. (2017). We formulate our objectives as 
follows: 
    z1=∑ ∑ ∑ tij

mxij
m

j∈Vi∈Vm∈M               (2) 

    z2=∑ ∑ ∑ cijxij
m

j∈Vi∈Vm∈M               (3) 

Z1 and Z2 in Equations 2 and 3 are two cost functions that minimize the total tour travel time and 
distance-related costs respectively, and Z2 and Z4 are the disutility of a firm to visit a location and 
disutility of a specific commodity being transported between locations i and j. All typical VRP 
constraints like capacity and conservation of flow and sub tour elimination constraints are used as 
proposed in the study of  Furtado et al. (2017). For the calibration of this general approximation of 
CVRP, we solve the CVRP iteratively for each firm minimizing a loss function. This loss function 
includes the deviation between the estimated and observed tour cost, time, start time, and end time 
for all firms. This loss function is defined in Equation 4. 

min∑ 𝐽(𝜃) = 𝑚𝑖𝑛
ఏ

ఏ               (4) 

Since the CVRP is computationally expensive and we must solve it repeatedly, a regular 
optimization algorithm cannot be easily used. Surrogate-based algorithms are a class of optimization 
methods that can find the minimum of functions that are expensive to evaluate. Such an algorithm 
works in the following steps:  

1- Initialization: Generate n initial Θ={θ1,θ2,…,θn} parameters for the CVRP model of each 
carrier using Latin hypercube sampling. In our case, we started with three samples. 

2- Evaluation: For each parameter setting, solve the CVRPΘ and evaluate the loss function.  
3- Surrogate construction: Fit a surrogate surface f to the evaluated samples using a 

Multivariate Gaussian process with mean μ and covariance Σ. 
    f(Θ)~N(μ,Σ)               (5) 

4- Search for minimum: Find the minimum of the surface interpolated for the sample of 
parameters.  
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    θmin=argmin
θ∈Θ

f(θ)              (6) 

5- Next evaluation point: the next evaluation point θ* in parameter space is where the expected 
improvement (EI) measure is maximum.  

    EI(θ*)=E[max(f(θmin)-f
*(θ),0)]             (7) 

where 𝑓(𝜃௠௜௡) is the average stochastic prediction at point θmin 
6- Update the surrogate surface: With the new parameter θ*, we update the covariance matrix 

and consequently the surrogate surface. The process iterates until the stopping criteria. 
 

3     Results and findings from model calibration  
In the Netherlands, the Central Bureau for Statistics (CBS) has digitally collected over 2.7 million 
records of shipments across the country for the year 2015. After data pre-processing, a set of 3,629 
tour activities of the 10 largest carriers are selected for this study. All tours together visit, on average, 
86 zones on a planning day.  The loading/ unloading and handling time at each visiting location is 
proportionally distributed (based on weight and number of commodities) over visited locations and 
is randomly drawn from an exponential distribution. The parameters of this distribution are 
estimated from a sample of data. Three parameters are estimated for each feature based on the 
departure time of the trips, i.e., morning, noon, and afternoon. The model run time was 238 minutes 
for calibration and simulation of the tours. The surrogate optimizer stopped on the optimality gap 
after 20 iterations and 87 function evaluations. Table 1 shows the estimated parameters of the VRP 
model.  

Table 1 –Estimated parameters of the model for different departure time intervals 

Param Morning (6:00-11:00) Noon (11:00-15:00) Afternoon (15:00-20:00) 
estimates Std estimates std estimates std 

θ βc 5.76 1.2e-3 4.293 4.38e-5 6.631 2.56e-2 
θ βt 0.098 1.4e-8 0.0819 3.29e-4 0.107 1.3e-2 
θ βUC -7.2 1.5e-6 -7.66 1.3e-5 -5.89 1.7e-4 
MAPE 8.7%  4.8% 18.1% 
R2 0.86 0.91 0.83 

 
The most salient findings go to the interpretation of cost (θ βc), time (θ βt), and capacity utilization of 
vehicles (θ βUC). Comparing tour preferences of carriers in different time intervals shows that travel 
time and cost are more important when carriers start a tour in the afternoon period. This means that 
carriers are likely to plan a shorter tour in distance with less total tour travel time. One possible 
reason for this is that carriers should reach the customers before the closing hours. On the contrary, 
the magnitude of the cost and time parameters for the noon period is relatively lower. This means 
that carriers are likely to make longer trips or plan tours with longer total tour travel times. 
Interestingly, the value of the capacity utilization parameter is also lower for the tours starting in the 
afternoon meaning that it is more likely to have less-than-truckload trips in the afternoon. The model 
estimates on average 42 minutes of (un)loading handling time using a bounded exponential 
distribution (minimum bound of 20 minutes). Drivers’ break times are estimated together with the 
handling time. Our dataset does not report on the time and location of drivers’ breaks but reports on 
the total tour duration. Therefore, the model can only capture these extra times along with the service 
time of each zone. The MAPE ranges between 8.7% and 18.1% with the maximum belonging to the 
afternoon mode and the correlation coefficient R2 is 0.86, 0.91 and 0.83 for the morning, noon and 
afternoon respectively. These measurements confirm the overall good performance of the model.  
 
The tour distance and number of stop distributions are two important aggregate features that should 
be captured well by tour models. We grouped tour distances into different clusters and compared the 
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estimated tour distance distribution with the observations in Figure 1. The results show that the 
model can approximate this feature reasonably well. It is noticeable that the model generates local 
tours (distance <50km) more frequently as compared to the observations. Similarly, we can see that 
the model captures the general pattern in the frequency of tours with different numbers of stops. In 
general, it can be concluded that tours with a smaller number of stops are slightly overestimated.   

 
Figure 1 – Estimated vs. observed tour distance and number of stops 

4     DISCUSSION 
In this concluding section, we discuss the ability and limitations of the proposed model. Estimating 
a general tour model which can represent the collective tour activities of large carriers can become 
an undetermined problem especially when a limited imperfect amount of disaggregated data is 
available. Researchers have been dealing with these problems in transportation science for decades. 
The performance and accuracy of models in these cases depend largely on the amount of prior 
information used to help the model converge to the real behaviour of road users. Our proposed 
method shows that additional, although imperfect, tour information like tour duration, cost, start 
time, and end time can provide a robust and accurate estimation of a single tour model with 
meaningful parameters that can reproduce the preferences of carriers in planning tours.  Developing 
such models with effective algorithms for robust estimation of model parameters is therefore 
essential due to the fact that perfect data are not always available to the public traffic sectors. This 
tool can also be used to understand the impact of freight activities on the traffic system. This is 
because the activities resulting from this model can be easily translated into a time-dependent truck 
OD table which can be coupled with a traffic simulation model. This could provide interesting 
insights into the interrelation between logistics and traffic. We also recommend a comparison study 
to examine the accuracy of our model among other tour models.  
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