
Drone Location and Scheduling Problems in Disaster Relief Management 
 

Pitu Mirchandani a,*, Monica Gentili b, Zabih Ghelichi b 
 a School of Computing and Augmented Intelligence, Arizona State University, AZ, USA 

pitu@asu.edu (corresponding author) 
b Department of Industrial Engineering, University of Louisville, KY, USA 

monica.gentili@louisville.edu, zabih.ghelichi@louisville.edu 
 

December 14, 2021 
Keywords: Drone logistics, Location and Scheduling, Simulation Optimization, Stochastic Optimization 
 
1. Introduction and Motivation 
A growing number of natural disasters have struck several regions around the world in the recent years, 
mostly related to climate and weather-related events, e.g., flooding, wildfires, and storms. For instance, the 
United States has experienced more than 290 major natural disasters since 1980, where millions of lives 
have been affected, and the damages have exceeded trillions of dollars [1]. Right after a disaster strike, 
immediate emergency responses are crucial to deliver urgently needed aid packages, e.g., insulin shots and 
blood pressure medicine, to those trapped in inaccessible regions. In such situations, transportation 
networks are of great importance as they provide vital platforms for rescue teams to dispatch medical and 
relief aid packages. However, many severe disasters commonly damage supply lines and transportation 
infrastructures and render people stranded without access to some urgent necessities. When land 
transportation modes like automobiles, trucks and trains are inoperable, at least until the road surface 
infrastructures are re-established again, aid delivery can resort to above ground modes. 
  
Unmanned Aerial Vehicles (UAVs), also referred to as drones, are remote controlled flying robots that can 
make immediate delivery of aid packages to many cut-off regions by overcoming many difficulties of the 
traditional surface and air delivery modes, e.g., trucks and helicopters, face. With not being restricted to 
established road networks, drones are capable of delivering urgently needed aid packages in a short time. 
The advantages of UAV utilization go beyond merely having access to remote and hard-to-access areas: no 
requirement of on-board pilots, no necessity of complicated and expensive launching infrastructure, and 
ability of serving multiple purposes. The unique potentials of drone systems recently attracted many 
attentions to the application of drones for the delivery of aid items in disaster-affected areas.   
 
Motivated by the challenges associated with the timely delivery of aid items in disaster-affected areas, this 
research studies the problem of drone location and scheduling problem for the delivery of aid items in cut-
off regions. In this research, we first propose two alternative location optimization problems to optimally 
locate drone launching platforms in the disaster affected areas. A platform is a structure that provides 
operational support for drones from which a drone starts and ends its trips and can recharge its batteries. 
The first problem formulates a deterministic model for the problem of locating drone platforms in the 
disaster affected areas. The second problem is a stochastic variant of the drone platform location problem 
that assumes the set of demand locations is unknown. In this study, we also propose a simulation-based 
evaluation model for the problem of drone-based delivery of aid items in humanitarian logistics. The goal 
is to develop a simulation system that can allow us to (1) evaluate alternative solutions obtained from the 
platform location problems, i.e., deterministic and stochastic, and (2) improve the solutions through a 
simulation-optimization procedure. The simulation model is designed to capture multiple sources of 



variabilities such as number of demands, intervals of demand realization, flight time of the drones, and 
battery failure.  
 
2. Platform Location Problems 
In this section, we propose two platform location optimization models where the first model assumes the 
set of demand locations is definite and known beforehand, i.e., deterministic model, while the second model 
considers the set of demand locations is subject to uncertainty.  
 
2.1. Deterministic Model 
Given a set of candidate drone platforms and a set of demand locations, the proposed model finds the 
number and location of drone launching facilities – referred to as platforms – schedules drone trips and 
determines the assignment between drone trips and demand points. In the proposed system, aid items, e.g., 
food, medications, and insulin shots, are loaded into a capsule held by a drone. Drones depart from their 
platforms for assigned demand points. Once a drone has reached its destination, it drops off its load and 
returns to its platform. We assume that the drone’s operational range is constrained with a maximum 
coverage range. We assume drones’ operational range is restricted by a maximum coverage range of drones.  
The main problem is to concurrently decide (1) where to locate the platforms, (2) which demand points 
must be served from each platform, and (3) the schedule and sequence of serving demand points, so that all 
packages are delivered within a given time period 𝑇𝑇 (e.g., one day) and the total disutility is minimized. 
Associated with each demand point that occurs is a utility (disutility) value that decreases (increases) with 
the delivery time. To address this problem, we formulated a timeslot formulation which discretize the 
planning period T into identical timeslot with prespecified granularity [2].  

 
2.2. Stochastic Model 
In this section, we extend a stochastic model to address the problem of locating drone platform in disaster 
affected areas. The model seeks to attain timely delivery of aid packages to disaster-affected regions via a 
fleet of drones when the set of demand locations is unknown. While the deterministic model assumes all 
the demand locations are known beforehand, a major realistic challenge for this problem is the consideration 
that the set of demand locations is initially unknown. The main problem is to locate a set of drone platforms 
such that with a specified probability 𝛼𝛼 (a percentile level), the maximum total disutility under all 
realizations of the set of demand locations is minimized, in other words the value of the 𝛼𝛼 percentile of the 
disutility distribution is minimized. In this study, we use the term combination to refer to a set of drone 
platforms. Therefore, among all possible combinations of drone platforms, the goal is to select the 
combination whose disutility distribution has the minimum 𝛼𝛼 percentile. In this problem situation, the set 
of demand points is subject to uncertainty, and the uncertainty set is comprised of a collection of scenarios. 
We develop a Chance Constrained Programming (CCP) formulation to find the (optimum) platform 
combination whose disutility distribution has the minimum 𝛼𝛼 percentile. To obtain the disutility 
distribution, we adopted the aforementioned deterministic timeslot formulation which essentially schedules 
and sequences a set of trips for the given fleet of drones so that the disutility is minimized [2].  
 
The proposed stochastic optimization formulation comprises multiple complexities and is computationally 
tedious. We propose a multi-stage algorithmic solution approach to efficiently address these complexities. 
The first stage applies a set of criteria to filter out a collection of the preferable candidates of platform 
combinations with a prespecified size. An example of such a criterion is coverage extent which measures 



the total number of demand locations that a combination of drone platforms can cover for a given maximum 
coverage range. The second stage derives disutility distributions for each set of candidate combination of 
platforms by solving a drone scheduling problem for each possible scenario of a set of demand locations. 
In this stage, we need to solve the scheduling model for every pair of platform combinations and scenarios. 
Owing to the large number of iterations and the NP-hard nature of the drone scheduling problem, we 
develop a heuristic greedy algorithm to mitigate the computation efforts for solving larger instances of the 
problem [3]. The last stage employs the properties of a Sample Average Approximation (SAA) method and 
CCP formulation to select the combination of platforms that produces the minimum 𝛼𝛼 percentile [4].  
 
3. Simulation-based Performance Evaluation Model 
In this simulation-based performance evaluator, we 
assume a set of drone platforms have already been located 
from which the drone fleet must serve the unknown 
demand locations. This decisions for locating these drone 
platforms are obtained through solving the deterministic or 
stochastic location optimization models. After the disaster 
strikes, the rescue team receives new information within 
variable time intervals. This information includes (i) the 
number of new demands and (ii) their corresponding 
coordinates in the disaster-affected area. Upon receiving 
the information, a scheduling model finds an optimum 
schedule and assigns a set of ordered trips to each drone. 
Then, the simulation model simulates the drone flights 
considering the dynamics and variabilities of the real-
world environment, such as variable travel time, service 
times, and battery failure. Then, after some random time 
interval such 𝛿𝛿, a set of information, including the information about the new demands, previously received 
demands, and the current state of the drones in the system, will be fed to the system, and the scheduling 
model will update drone schedules. And the process will be continued and repeated until a stop condition, 
e.g., operational time, is met (see Figure 1). The proposed simulation model captures the variations in 
different system parameters including (1) Interval of updating the system after receiving new information, 
(2) demand parameters: the demand rate and their spatial distribution (locations), (3) service time 
parameters: travel times, setup and loading times, payload drop-off times and repair times, and (4) drone 
energy level: battery’s energy is impacted and requires battery change/recharging while flying. We employ 
the simulation model to evaluate the performance of alternative solutions obtained from the platform 
location models and improve them through a simulation-optimization procedure.  

  
4. Simulation-Optimization Procedure 
In this section, we employ the proposed simulation model to improve the solutions obtained from the 
platform location optimization models through a simulation-optimization procedure. The procedure starts 
with finding an optimum solution to the platform location problems. Let 𝜆𝜆𝑚𝑚∗  the set of optimum platform 
locations when 𝑚𝑚 drone platforms are selected in a platform location model, e.g., deterministic model. 
Now, we perform a set of analytical studies by evaluating the k-opt neighbors to 𝜆𝜆𝑚𝑚∗ . A k-opt neighbor to 
the optimum solution with 𝑚𝑚 platforms is a list of 𝑚𝑚 locations which differs from 𝜆𝜆𝑚𝑚∗  in 𝑘𝑘 elements. By 

Figure 1. Simulation Model 



𝜆𝜆𝑚𝑚𝑖𝑖 , we denote the 𝑖𝑖𝑡𝑡ℎ neighbor in k-opt neighborhood of 𝜆𝜆𝑚𝑚∗ . Once we have explored the neighborhood to 
𝜆𝜆𝑚𝑚∗  and identified a set of neighbors, we run the simulation model for 𝜆𝜆𝑚𝑚∗  and all the identified neighbors 
𝜆𝜆𝑚𝑚𝑖𝑖 . Given a set of performance criteria, e.g., waiting time per demand and percentage of served demands, 
if there exists an alternative solution, i.e., neighbors, such 𝜆𝜆𝑚𝑚

𝑗𝑗  which can outperform the optimum solution 
𝜆𝜆𝑚𝑚∗  in terms of all the performance criteria, then we can substitute the optimum solution 𝜆𝜆𝑚𝑚∗  with 𝜆𝜆𝑚𝑚

𝑗𝑗  and 
repeat the procedure. If there are multiple such solutions that outperform 𝜆𝜆𝑚𝑚∗  , we can choose one of the 
randomly or optimize a weighted summation of measures.  
 

 
 
5. Preliminary Results 
Considering a case study of central Florida discussed in Gentili et al. [2] with 25 candidate drone platform 
and 100 demand locations, we solved the platform location problem by using the proposed deterministic 
and stochastic models where the set of optimum locations with 𝑚𝑚 drone platfroms are denote by 𝜆𝜆𝑚𝑚∗  
(deterministic) and 𝛾𝛾𝑚𝑚∗  (stochastic), respectively. We first employed the simulation model to evaluate the 
performance of the alternative solutions 𝜆𝜆𝑚𝑚∗  and 𝛾𝛾𝑚𝑚∗  for differnet range of demand values. We observed that 
when a large number of demands appear in the realization, the solution of the deterministic model 
outperforms the stochastic one. On the other hand, we can observe that the only case where the solution 
from the stochastic model outperforms the deterministic models is when there are a small number of 
platforms to locate, i.e., 𝑚𝑚 = 8, and a small number of potential demand locations. In another set of 
experiments, we used the proposed simulation-optimization procudere as to improve the obtained solutions 
from the deterministic and stochastic models. We observed that a simple 1-opt neighborhood search could 
improve the obtained results in all aspects. For example, for the deterministic model when 𝑚𝑚 = 8, we could 
identify 4 nieghbor that outpeforms the optimum solution 𝜆𝜆8∗ . We also observed that with lower number of 
available platforms, i.e., 𝑚𝑚 = 8, the difference between the optimum solution and its better neighbors is 
more significant. However, as the number of platforms increases, this difference becomes smaller.  
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