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1 INTRODUCTION

Transit line-planning is a long standing transportation problem that is getting renewed attention
due to the recent interest in multi-modal transit systems that incorporate Mobility-on-Demand
(MoD) services. A multi-modal system aims to provide an efficient and cost effective mix of
transportation modes to overcome the limitations of any single mode. One of the major challenges
and opportunities in designing such systems is the fact that part of the system is fixed (e.g.,
bus routes are fixed), while the demand responsive MoD component can dynamically adjust to
demand uncertainty. There have been a number of recent algorithms proposed to design and
operate such systems Maheo et al. (2019), Pinto et al. (2020), Dalmeijer & Van Hentenryck
(2020), Périvier et al. (2021), Banerjee et al. (2021)). However, most of these studies assume
that the underlying travel demand is deterministic, even though the demand is stochastic—
and importantly, a factor that makes multi-modal transit systems with MoD components more
attractive.

This work aims to provide some guidance on how demand uncertainty should be accounted
for with respect to a general class multi-modal transit network planning problems, by providing
theoretical bounds on common approaches used in the literature (without theoretical justifica-
tion). In particular, we show that when the demand for each origin-to-destination pair follows a
bounded distribution independent of time and the known information about the distribution is
its expectation and its upper and lower bounds, we can replace the actual (stochastic) demand
with its expectation to approximate the (stochastic) true values as long as the span of plan-
ning time length is reasonably long. We also show that this framework can be used to compare
between two different combinations of modes.

2 Modeling

Although our framework is generally applicable to many models of transit network design, for
clarity and conciseness we illustrate it with one such model in this abstract, specifically a deriva-
tive of the ODMTS (On-Demand Multimodal Transit Systems) model from Dalmeijer & Van Hen-
tenryck (2020). Let G = (V,A) with vertices V = {1, . . . , n} and arc set A. Let M be the set of
possible transportation modes, and F be set of the frequency options for transportation modes.
Then a ∈ A is defined by a = (i, j, f,m) ∈ V × V ×M × F, ∀i ̸= j.
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To design a multi-modal transit network over T time intervals, we need to determine which
arcs are going to be opened to serve passengers over the given time span. Let the decision
variables be z := (za)a∈A such that za = 1 if a is opened and za = 0 otherwise. Let βa ≥ 0 be
the operating cost for each time interval and a ∈ A, and ca be the travelling cost incurred by
one passenger using arc a within one time interval.

Once z is fixed, a passenger’s trip r is routed based on the given network design, her origin
node, destination node and specified routing rules for all the passengers. For example, in the
ODMTS model, one of the rules is that each passenger can use at most K arcs in G, where K
is a fixed positive integer. Then let R be the set of all passenger trips, and let each trip r ∈ R
be defined by (o(r), d(r)) ∈ V × V , where o(r) is the origin of r, d(r) is a destination of r. Note
that here we assume the route for r is a simple path, i.e. each arc a is only traveled once by r.
Also, let pt(r) be the number of passengers on r within time interval t.

Given route planning rules and a network design z, there is a fixed route and travelling cost
RC(z, r) incurred by a passenger of trip r traveling within one time interval. Note that here we
implicitly state that for passengers of the same trip, the corresponding travelling costs are equal.
This is because we assume that each transportation mode has no capacity constraints and the
routing rules are applicable to all the passengers. Now we can formulate the whole problem as
the following.

min
z

T∑
t=1

((∑
a∈A

βaza

)
+
∑
r

pt(r)RC(z, r)

)
, (1a)

s.t.
∑

a∈δ+(i,m)f(a)za

f(a)za −
∑

a∈δ−(i,m)f(a)za

f(a)za = 0 ∀i ∈ V,m ∈ M (1b)

∑
f∈F,(i,j,m,f)∈A

z(i,j,m,f) ≤ 1 ∀i ∈ V,m ∈ M, (1c)

za ∈ {0, 1} ∀a ∈ A, (1d)

which is equivalent to

min
z

∑
a∈A

βaza +
∑
r

∑T
t=1 pt(r)

T
RC(z, r), (2a)

s.t.
∑

a∈δ+(i,m)f(a)za

f(a)za −
∑

a∈δ−(i,m)f(a)za

f(a)za = 0 ∀i ∈ V,m ∈ M (2b)

∑
f∈F,(i,j,m,f)∈A

z(i,j,m,f) ≤ 1 ∀i ∈ V,m ∈ M (2c)

za ∈ {0, 1} ∀a ∈ A. (2d)

Here (2b) guarantees the in-flow is equal to the out-flow for each mode and each node, and (2c)
assures each arc can only adopt one frequency.

Note that the formulation here is different from the one by Dalmeijer & Van Hentenryck
(2020) in two aspects: (1) we add time t as a new dimension to our model, (2) routing rules can
be more general here than in ODMTS model in which the number of transfers is restricted, and
trips are routed for minimal costs.

When pt(r) is known for every t and r, we can solve (2) with an exact algorithm or heuris-
tic. However, in real life, pt(r) is usually uncertain (especially when T is large). As we have
mentioned, in this work we try to deal with the issue caused by the uncertainty. Specifically,
we will assume that pt(r) ∈ [lr, ur] for ur ≥ lr ≥ 0, and E(pt(r)) is known, and denoted by Er.
Without loss of generality, we can assume pt(r) ∈ [0, u] by setting u = max

r
ur. Note that pt(r)

is independent w.r.t. t but not necessarily w.r.t. r. We also assume that there exists λ > 1 such
that for each r, λEr ≥ ur.
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3 Methodology and Results

We will show that under the above assumptions, when T is larger than a threshold polynomial
in the input size, the solution of (2) can be approximated well by the following deterministic
optimization problem.

min
z

∑
a∈A

βaza +
∑
r

Er ·RC(z, r), (3a)

s.t.
∑

a∈δ+(i,m)f(a)za

f(a)za −
∑

a∈δ−(i,m)f(a)za

f(a)za = 0 ∀i ∈ V,m ∈ M, (3b)

∑
f∈F,(i,j,m,f)∈A

z(i,j,m,f) ≤ 1 ∀i ∈ V,m ∈ M, (3c)

za ∈ {0, 1} ∀a ∈ A, (3d)

where Er and RC(z, r) are defined same as in Section 2.

For simplicity, let objT (z) :=
∑

a∈A βaza +
∑

r

∑T
t=1 pt(r)

T RC(z, r), and |R| be the size of the trip
set R.

Our first result shows that as T increases, the solution of (3) converges1 to an optimal solution
of (2).

Theorem 3.1. Let OPTT and OPTE be the optimal values of (2), and (3). Also, let z(T ) :=

(z
(T )
a )a∈A and z(E) := (z

(E)
a )a∈A be the optimal solution to (2) and (3). Then we have

OPTT
a.s.−→ OPTE as T → ∞, (4)

objT (z
(E))− OPTT

a.s.−→ 0 as T → ∞. (5)

Although the above result shows that the estimation converges to the real optimal value as
T increases, it will be unrealistic if T needs to be exponential in the input size of the original
problem to attain a desired error rate. Fortunately, the following results show that T only needs
to be polynomial in the input size so that the approximation is close to the original optimal
solution.

Theorem 3.2. With the same notation as in Theorem 3.1, for 0 < α ≤ 1, we have

P
{∣∣∣objT (z

(E))− OPTT

∣∣∣ ≥ αOPTT

}
≤ 2|R| exp

(
− Tα2

(2(1 + α)|R|+ α)2λ2

)
. (6)

Hence for α > 1, we have

P
{∣∣∣objT (z

(E))− OPTT

∣∣∣ ≥ αOPTT

}
≤ 2|R| exp

(
− T

(4|R|+ 1)2λ2

)
. (7)

Corollary 3.3. Given 0 < δ < 1 and 0 < α ≤ 1, if T ≥ log(2|R|
δ )λ2

(
2(1 + 1

α)R+ 1
)2, we have

P
{∣∣∣objT (z

(E))− OPTT

∣∣∣ ≥ αOPTT

}
≤ δ. (8)

1Here a.s.−→ refers to almost surely convergence.
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In some application scenarios, comparison between different combinations of modes is needed.
For example, a transit agency might be deciding whether to introduce a BRT or light-rail service
in combination with regular bus service and a demand responsive shuttle service. To estimate the
cost ratio, we need to estimate the corresponding costs by solving (3) with different transportation
modes constraints, and show that the estimated ratio of costs is close to the true ratio if the
estimated solutions are employed. Particularly, we prove the following theorem.

Theorem 3.4. Given A1, A2 ⊆ A, let OPT1 and OPT2 be the solutions to (3) with added
constraints za = 0 for a ∈ A1 and za = 0 for a ∈ A2 respectively. Let z(1) and z(2) be the
corresponding solutions. Then for α > 0, we have

P

{∣∣∣∣∣objT (z(2))
objT (z(1))

− OPT2

OPT1

∣∣∣∣∣ ≥ α
OPT2

OPT1

}
≤ 4|R| exp

(
− α2T

(2 + α)2|R|2λ2

)
(9)

In Theorem 3.4, A1 and A2 are the sets of arcs that are not considered. Consider the case
of comparing the solution z(1) corresponding to the case when only a subset of transportation
modes M1 ⊆ M can be selected with the solution z(2) corresponding to only M2 ⊆ M being
available for adoption. Then we can let A1 be the set of arcs that correspond to the modes not
in M1, and A2 be the set of arcs that correspond to the modes not in M2.

In addition to this concentration result, we can also prove the convergence and a threshold
for T similar to Theorem 3.1 and Corollary 3.3.

Corollary 3.5. With the same notation as in Theorem 3.4, we have

objT (z(2))
objT (z(1))

a.s.−→ OPT2

OPT1
as T → ∞. (10)

Corollary 3.6. Given 0 < δ < 1 and 0 < α ≤ 1, if T ≥ log(4|R|
δ )λ2

(
(1 + 2

α)|R|
)2, we have

P

{∣∣∣∣∣objT (z(2))
objT (z(1))

− OPT2

OPT1

∣∣∣∣∣ ≥ α
OPT2

OPT1

}
≤ δ. (11)

Remark. At this point, we have shown that the optimal solution to (2) is an estimation with
desired error rate as long as T is polynomially large. However, solving (2) exactly can be time-
consuming. Fortunately, if there is an algorithm or heuristic that returns a near-optimal solution
to (3) with some approximation ratio, then it can be demonstrated that this solution is also a
near-optimal solution to (2) with a similar performance guarantee as long as T is polynomial in
the input size of the original problem. We will also conduct numerical experiments in the future.
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