
An Exact Algorithm for a Practical Pickup and Delivery Problem

Lucas Sippel, Michael A. Forbes, Joseph Menesch

School of Mathematics and Physics, The University of Queensland, Brisbane, Australia
uqlsippe@uq.edu.au, m.forbes@uq.edu.au, joseph.menesch@uqconnect.edu.au

Extended abstract submitted for presentation at the 11th Triennial Symposium on
Transportation Analysis conference (TRISTAN XI)

June 19-25, 2022, Mauritius Island

April 4, 2022

Keywords: Vehicle routing, Fragments, Learning

1 Introduction

Fragment based methods have been used in Alyasiry et al. (2019) and Rist & Forbes (2021)
to solve the Pickup and Delivery Problem with Time Windows and the Dial-a-Ride Problem.
We propose a fragment based branch-and-cut algorithm for the Practical Pickup and Delivery
problem (PPDP) from Xu et al. (2003).

Xu et al. (2003) state that the PPDP “involves a set of practical complications that are
commonly seen in practice but have received little attention in the vehicle routing literature".
The most important of these are the existence of multiple time windows per request and the
American hours of service (HOS) constraints. These require a driver to have a 10 hour rest
minimum after at most 11 hours driving or 14 hours working. Also since Xu et al. (2003)’s study
was published, another HOS constraint requiring drivers to take a half hour break at most every
eight hours has been introduced, which we consider.

Xu et al. (2003) use a forward labelling dynamic program (DP) to construct negative reduced
cost vehicle routes in a price-and-branch heuristic. However, high dimensional labels are needed
to handle the HOS constraints. So the DP is slow for instances up to 200 requests, and intractable
for larger instances. Thus, the exact column generation DP is replaced by two heuristics for the
pricing problems in larger instances. The set partitioning integer program is solved on a restricted
subset of the routes once column generation terminates.

The proposed fragment based branch-and-cut algorithm has no need for column generation,
but instead uses a DP to schedule rests and breaks for routes retrospectively. The lifted feasibility
cuts of Rist & Forbes (2021) are used to eliminate routes when rests and breaks cannot be feasibly
scheduled. When they can, optimality cuts are used to incorporate the extra waiting cost into
the objective. Using a schedule DP and optimality cuts in a fragment based algorithm comprise
two novelties of this work. Combined, they enable the first exact algorithm for the PPDP. The
algorithm is also the first exact method for a vehicle routing problem with HOS constraints, that
considers multiple time windows per request, and a cost in the objective function for each hour
vehicles are active. Computational results demonstrate the algorithm’s ability to solve instances
with up to 700 requests. We also describe a supervised learning model used to restrict the set of
fragments, when fragment enumeration becomes intractable.

TRISTAN XI Symposium Original abstract submittal

Lucas Sippel, Michael A. Forbes, and Joseph Menesch 2

2 Methodology

A PPDP instance with n requests has locations V = {1, ..., 2n}, where i ≤ n is the pickup of
request i and i+n is the delivery. We denote the set of pickups by P . For all i, j ∈ V , dij is the
distance and tij is the travel time between i and j. Travel times are multiples of half an hour
such that the time windows of each i ∈ V can be converted to a discrete set of time points TPi.

2.1 Fragments

Generating all feasible routes for even moderately sized instances is intractable. In the same way
as Alyasiry et al. (2019), we circumvent this by generating fragments instead. Fragments are
sequences of pickups and deliveries where the vehicle starts empty, ends empty, is never interme-
diately empty and time window, capacity, pairing, precedence and HOS constraints are satisfied.
We also create extended fragments by connecting each fragment to every feasible next pickup.
Since fragments are shorter than routes, there are typically far fewer of them, and any route can be
constructed by concatenating fragments. For example, a route such as (p1, p2, d2, d1, p3, d3, p4, d4)
is constructed with extended fragments (p1, p2, d2, d1, p3) and (p3, d3, p4), and fragment (p4, d4).

2.2 Timed Network

We build a timed network from the fragments. The timed network has timed nodes for each
pickup p ∈ P , (p, t), where t ∈ TPp. We denote the set of timed nodes P̄ . Consecutive pairs of
timed nodes for the same pickup are connected by waiting arcs. We denote the set of waiting
arcs A. Each a ∈ A starts at timed node a− = (pa, ea) and ends at timed node a+ = (pa, fa).
We then create timed fragments from each fragment. Each timed extended fragment ω connects
a timed node (i, t) to another timed node (j, t+∆ω), where ∆ω is the minimum duration of the
timed fragment sequence calculated by the schedule DP. Timed fragments with no extension do
not connect to a succeeding timed node since they represent the end of a route. We denote the
set of timed fragments which include pickup p ∈ P by Ωp, and let Ω = ∪p∈PΩp. Ωf is the set of
timed fragments originating from fragment f. Each ω ∈ Ω has corresponding fragment fω and
starts at timed node ω−. Timed extended fragments ω end at timed node ω+.

We then define the relaxed fragment mixed integer program, RF. RF has binary variables xω
for each ω ∈ Ω, ya for each a ∈ A, and zj for each j ∈ P̄ which are one if and only if a route
starts at j. Variables θp for each p ∈ P are used to implement the optimality cuts described
later. RF is thus

min
∑
j∈P̄

F · zj +
∑
a∈A

β · (fa − ea) · ya +
∑
ω∈Ω

cω · xω +
∑
p∈P

β · θp (1)

subject to

zj +
∑

a∈A|a+=j

ya +
∑

ω∈Ω|ω+=j

xω−
∑

a∈A|a−=j

ya −
∑

ω∈Ω|ω−=j

xω = 0 ∀j ∈ P̄ , (2)

∑
ω∈Ωp

xω = 1 ∀p ∈ P, (3)

xω, ya, zj ∈ {0, 1} ∀ω ∈ Ω, a ∈ A, j ∈ P̄ , (4)
θp ≥ 0 ∀p ∈ P, (5)

where F is the fixed route cost and β is the waiting cost per hour. For timed fragment ω with
corresponding fragment fω = (i1, ..., il), cω is the sum of distance and waiting costs incurred by
the vehicle, cω = α

∑l−1
j=1 dijij+1 + β(∆ω −

∑l−1
j=1 tijij+1) where α is the per mile driving cost. So

RF minimises the total fixed, distance and waiting costs, subject to flow conservation constraints
(2), coverage constraints (3), binary constraints (4), and non-negativity constraints (5).

TRISTAN XI Symposium Original abstract submittal

Lucas Sippel, Michael A. Forbes, and Joseph Menesch 3

Routes are represented by chains of timed fragments at integer solutions to RF, however,
chains may correspond to sequences for which rests and breaks cannot be scheduled. These are
eliminated with lifted lazy constraints as in Rist & Forbes (2021).

2.3 Optimality Cuts

Suppose a route in an integer solution to RF is represented by the chain of timed fragments,
(ω1, ..., ωl). The route may require extra rests and breaks not included in the timed fragment
schedules, since these are calculated assuming timed fragments start with zero accumulated
working and driving hours. To handle this, variables θp for each pickup p ∈ P model the extra
waiting time of a route starting at p in the current integer solution. The extra waiting time, E,
is calculated via the schedule DP. If p is the route’s first pickup, we use the optimality cut

θp ≥ E ·
(∑

j∈{p}×TPp

zj +
l∑

i=1

∑
ω∈Ωfωi

xω − l

)
, (6)

to include the extra waiting cost in the objective.

3 The Schedule DP

We update Goel & Kok (2012)’s schedule DP to handle the additional HOS constraint mentioned
in the introduction. The schedule DP calculates the minimum completion time for some request
sequence (i1, ..., il) and start time t∗, given rests and breaks must be scheduled according to
HOS constraints. It returns ∞ if the sequence cannot satisfy the HOS constraints. The DP is
used to assess the feasibility of fragment sequences during their enumeration, and to calculate
the minimum completion time of each timed fragment given their start time. Also, it is used to
assess the feasibility of routes and separate optimality cuts at integer solutions to RF.

4 Learning Model

In large instances with high request spatial density, enumerating time fragments becomes impos-
sible due to the memory limit. We propose a simple supervised learning model which restricts
the set of fragments and hence |Ω|. A sequence of pickups and deliveries f′ = (i1, ..., il) is a
partial fragment if there exists a fragment f = (i∗1, ..., i

∗
m) such that ij = i∗j for j = 1, ..., l. We

let Xf′ be the set of pickups p for which (i1, .., il, p) is also a partial fragment. Enumerating
fragments involves repeatedly extending partial fragments f′ to all p ∈ Xf′ .

For each partial fragment f′, instead of extending to all pickups in Xf′ , we can extend to some
subset Rκ(f

′) ⊆ Xf′ where κ is a fixed integer and |Rκ(f
′)| = κ. To construct Rκ(f

′) we require
feature vector v(f′, p) ∈ Rh for each p ∈ Xf′ which depends on the partial fragment f′ and the
candidate pickup extension p. Firstly, we obtain an ordering, p(1), ..., p(|Xf′ |), of the pickups in
X ′
f by arranging them in ascending order with respect to a linear combination of the features,

u(f′, p|a) = a⊤v(f′, p), where a ∈ Rh. Then we let Rκ(f
′) = Rκ(f

′|a) = {p(1), ..., p(κ)} ⊆ Xf′ .
Choosing weight vector a involves collating N partial fragment next pickup pairs, {(f′j , pj)}Nj=1,

from optimal solutions to small, randomly generated instances. We use a loss function that counts
the number of times pj /∈ Rκ(f

′
j |a),

l(a|{(f′j , pj)}Nj=1) = N −
N∑
j=1

I(pj ∈ Rκ(f
′
j |a)). (7)

Hence, to find a we solve
min
a∈Rh

l(a|{(f′j , pj)}Nj=1). (8)

TRISTAN XI Symposium Original abstract submittal

Lucas Sippel, Michael A. Forbes, and Joseph Menesch 4

5 Computational Results

Table 1 gives summary results for the proposed algorithm on instances generated according to
Xu et al. (2003)’s procedure, except we restrict problems to one vehicle and carrier type with no
request incompatibilities. Column Size gives the side length of the square region which locations
are distributed in. Values given in each row are averages over 15 instances.

The Ω column gives the number of timed fragments enumerated. The T1 column gives timed
fragment enumeration duration in seconds. Column T2 gives solve times, which are limited to
7200 seconds. Bold font indicates that all 15 instances are solved to optimality. The numbers
in superscript give the number of instances where timed fragments can be enumerated, and the
number of instances solved to optimality respectively. Column Gap is calculated as UB−LB

LB
where UB is the best objective value found and LB is the largest lower bound found within the
time limit when solving exactly. The Ω̂ Prop. column gives the proportion of timed fragments
enumerated when the extension restriction model is used with h = 3 and κ = 3. Finally, column
ˆGap is calculated in the same way as column Gap, except UB is replaced with ÛB which is the

best objective value found when using the extension restriction model.
Instances with up to 300 requests and high spatial density are solved to optimality. It is worth

noting that Xu et al. (2003) only give near optimal solutions for similarly sized instances with
lower spatial density. Our algorithm can also solve larger instances with lower spatial density to
optimality. Finally, the extension restriction model achieves near optimal solutions with fewer
timed fragments, especially for problems with high spatial density. Hence, we infer that near
optimal solutions can be reliably obtained for instances with n ≥ 400 and a Size of 800.

Table 1 – Computational Results for Randomly Generated Instances

n Size Ω T1 T2 Gap Ω̂ Prop. ˆGap

50 800 5161.5 0.9 1.3 0.0000 0.77 0.0015
1200 2434.1 0.7 0.5 0.0000 0.94 0.0004
1600 1385.0 0.6 0.3 0.0000 0.98 0.0003

100 800 37807.7 5.5 21.8 0.0000 0.50 0.0055
1200 9918.5 2.6 2.1 0.0000 0.82 0.0031
1600 4934.3 2.1 1.1 0.0000 0.93 0.0016

200 800 329574.5 48.2 2475.1(15,7) 0.0018 0.25 0.0121
1200 52497.0 12.1 24.1 0.0000 0.65 0.0062
1600 21907.1 9.0 4.5 0.0000 0.83 0.0041

300 800 1921789.9 295.9 5684.4(15,2) 0.0061 0.13 0.0215
1200 184671.5 37.0 107.0 0.0000 0.46 0.0097
1600 57035.6 21.4 15.3 0.0000 0.74 0.0062

400 800 5017686.6 814.7 7261.5(5,0) 0.0206 0.09 0.0299
1200 432336.1 90.7 1398.4(15,12) 0.0002 0.37 0.0145
1600 114166.9 41.9 38.0 0.0000 0.67 0.0098

500 1200 936553.5 183.5 3679.6(15,7) 0.0010 0.29 0.0155
1600 212178.4 71.4 124.2 0.0000 0.58 0.0125

600 1200 1492127.7 307.6 5166.9(15,1) 0.0019 0.26 0.0185
1600 346486.3 117.6 565.9 0.0000 0.53 0.0133

700 1200 3062339.8 647.5 6499.0(12,1) 0.0046 0.19 0.0230
1600 521197.7 178.1 1202.7(15,13) 0.0001 0.47 0.0154

References
Alyasiry, Ali Mehsin, Forbes, Michael, & Bulmer, Michael. 2019. An Exact Algorithm for the Pickup and

Delivery Problem with Time Windows and Last-in-First-out Loading. Transportation science, 53(6),
1695–1705.

Goel, Asvin, & Kok, Leendert. 2012. Truck Driver Scheduling in the United States. Transportation
science, 46(3), 317–326.

Rist, Yannik, & Forbes, Michael A. 2021. A New Formulation for the Dial-a-Ride Problem. Transportation
science, 55(5), 1113–1135.

Xu, Hang, Chen, Zhi-Long, Rajagopal, Srinivas, & Arunapuram, Sundar. 2003. Solving a Practical
Pickup and Delivery Problem. Transportation science, 37(3), 347–364.

TRISTAN XI Symposium Original abstract submittal

	Introduction
	Methodology
	Fragments
	Timed Network
	Optimality Cuts

	The Schedule DP
	Learning Model
	Computational Results

