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1 INTRODUCTION

Many western-European railway infrastructure operators plan the development of their networks
according to demands given by a long-term timetable. While the railway timetabling process on
its own has been thoroughly studied and optimized (refer to chapters five and six of Borndörfer
et al. (2018) or Caimi et al. (2017) for an overview) and railway network design has been the
topic of various publications as well (e.g. Spönemann (2013) or chapter three of Borndörfer
et al. (2018)), the combination of the two still leaves room for further research. In this extended
abstract, we propose an optimization model for the timetable-based railway network design
problem, which integrates timetabling and network design on a macroscopic infrastructure.

2 METHODOLOGY

2.1 Problem Overview

The task is to design a railway network that allows stable operations of a set of trains while
respecting the input timetable, which defines time bounds, start and destination for each train.
Additionally, the timetable is refined by assigning arrival and departure times for each train and
each used arc. We propose an optimization model that minimizes both infrastructure costs and
trip durations while

• conserving integral flows

• respecting the given time bounds for each train

• determining a detailed routing and timing on the macroscopic infrastructure

• not exceeding line capacities by respecting train-sequence and train-type dependant mini-
mal headway times
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2.2 Modelling Approach

In the proposed model, we define an input timetable as a set of integral flows travelling from
a source node to a destination node, each having time bounds on both ends that need to be
respected. Each flow represents a train trip and has a train type (e.g. local, intercity, freight),
on which the travel times depend. It is also possible to further specify the routing by including
via-stations into the timetable. Apart from that, the trains can be routed freely through the
network, which is defined as a multi-graph G = (N,A) featuring nodes i ∈ N and arcs (a) or
(i, j, tr) ∈ A. Nodes represent stations or interlockings and provide the opportunity to change
from one arc to another or to wait for a free time slot on the next arc. Currently, node capacities
are not limited. The arcs (i, j, tr) are identified by their origin node i, their destination node
j and their track number tr and represent one track of a railway line. The construction of
multiple parallel tracks is possible. Each arc is considered bi-directional, which allows modeling
both single-track lines as well as double or multi-track lines. The inclusion of an arc into the
network, indicated by decision variable yi,j,tr, comes at the expense of associated fixed building
costs fi,j,tr. Pre-existing tracks can be modelled by setting their building costs to zero. On each
arc, train-type dependant travel times tk,i,j are in place and a specific matrix of minimal headway
times can be assigned.

To estimate the number of parallel tracks necessary for the operation of the input timetable,
minimal headway times (MHT) are used to evaluate the consumed capacity on each track. Since
these headway times and as such the railway capacity in general depend on different factors,
the optimization model features various possibilities to model capacity extensions, namely the
inclusion of another parallel track and the reduction of travel and headway times.

The opportunity to reduce travel and headway times in the model represents changes to the
railway capacity which don’t come at the cost of a brand new track, e.g. updating the train
control system. They are modelled by specific reduction variables rtime and rMHT , which come
with associated costs ctime and cMHT for each unit of time reduction. These variables are strictly
bound to avoid unrealistic results.

The timetabling aspect is modelled by variables dk,i,j,tr and ak,i,j,tr, which define the departure
and arrival times of train k while travelling on arc (i, j, tr). Whether a train is using a certain
arc or not is specified by binary decision variable xk,i,j,tr.

2.3 Optimization Model

The model features an objective function that minimizes both infrastructure costs (for building
tracks and reducing trip or headway times) and trip times. The minimization of trip times uses
the difference between arrival and departure time for each train

∑
ak −

∑
dk, which includes

both travel times and dwelling times at nodes.

min
∑

faya +
∑

ctimertime +
∑

cMHT rMHT +
∑

ak −
∑

dk (1)

The objective function (1) is subject to three different sets of constraints, each responsible
for a specific aspect of the optimization. The first block deals with the network design aspect
and features a flow conservation constraint, a linking constraint that makes sure, that trains are
only travelling on arcs included in the network and a track sequence constraint, which assures
that the parallel tracks on a line are built in ascending order.

The second block deals with the timetabling aspect. It comprises constraints that make sure,
that the difference between arrival and departure times on an arc equals the travel time minus
the optional reduction variable. There are also constraints to ensure, that the time bounds
given in the input timetable are not violated. Last but not least, the timetabling block features
constraints that enforce that a train doesn’t leave a station before it arrives there.
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The minimal headway times are enforced in the last set of constraints. Here, an additional
decision variable zi,j,tr,k1,k2 is introduced, which is set to one if trains k1 and k2 are running on the
same track and if train k1 is running before k2. In this case, the departures of the two trains have
to be separated at least by the headway time defined for the arc (i, j, tr) and the combination
of train types. The enforcement of headway times is modelled using a Big-M Constraint, which
is en- or disabled by the decision variable z. The headway time constraint set exists twice, once
for trains using the same track in the same direction and once for trains running on the same
track in opposite directions.

2.4 Solution Approach

Since the number of variables becomes very large and the model is quite complex, a two-stage
solution approach has been developed. In the first stage, only the x and y-variables are considered
and many constraints dealing with timetabling and headway times are relaxed. They are replaced
with two constraints that ensure time bounds and capacities in a more general way. The time
bounds are enforced by a constraint that makes sure, that the sum of travel times of each train
doesn’t exceed the time window given by the input timetable. Instead of the minimal headway
times, a basic worst-case capacity measure is introduced. It limits the number of trains running
on a track by assuming that the longest possible headway time, which occurs on a track if the
fastest train type follows the slowest, has to be respected between all pairs of trains. With these
constraints in place, the routing and a basic network are calculated in the first optimization step.
Since the time bounds might require train crossings between stations and therefore at least one
track per direction, the result from the first stage is altered to make sure, that on each line at
least two tracks are constructed. This basis network features more arcs than necessary and will
be refined in the second step, once the more detailed and favourable capacity estimation is used.
The second stage introduces the timing variables a and d, the reduction variables rtime and rMHT

and the headway time variables z. Since these are only created for the network which resulted
from the first stage and not for all possible arcs, their number and with them the calculation
time of the second stage can be greatly reduced by this two-stage approach. The second stage is
implemented as a new optimization model which also discards the x and y-variables that were
not used in the first stage’s solution. This has proven to be beneficial for the performance instead
of simply adding the additional variables and constraints to the existing model.

3 CASE STUDY

To test the model, prove its functionality and evaluate its performance, a small case study
based on data from the German nation-wide timetable concept, the Deutschlandtakt, has been
created. The network consists of 110 nodes and 149 lines, on which at most 5 parallel tracks
can be constructed. Input timetables with different amounts of trains have been tested. The
model has been implemented in Python 3.8 and solved with Gurobi 9.1.2 on a Lenovo Thinkpad
T490 Laptop featuring an Intel i7-8565U CPU and 16 GB of RAM. A short overview of some
computational results as well as data for the model size can be found in table 1. A typical result
can be seen in figure 1, with the network after the first stage on the left and after the second
stage on the right-hand side.

Table 1 – Computational results

Trains St.1 - Vars St.1 - Cons St.1 - Time[s] St.2 - Vars St.2 - Cons St.2 - Time[s]
22 38717 9790 0,83 6035 14806 22,55
40 76985 25342 253,32 18336 29637 20.913,91
60 127105 51891 27,3 25488 37901 2616,82
92 280033 154254 407,54 82685 111614 no Sol. (24 h)
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Figure 1 – Exemplary network after first (left) and second stage

It is worth noting, that the computation times shown in table 1 are not only dependent on
the train count, but also on various factors not included in the table, e.g. the type of trains, the
trip length and how the trains spread over the network.

4 OUTLOOK

The presented model provides the base for further extensions in various directions. On one hand,
the model is going to be expanded in a way that allows the consideration of the robustness of the
network against timetable changes. Various methods including worst-case robust and stochastic
optimization with demand uncertainties are currently evaluated for this purpose. One promising
way to model network robustness is by including a set of optional trains and performing various
tests with them, e.g. by introducing a trade-off between infrastructure cost and penalties for
non-travelling trains or by creating scenarios by randomly choosing a certain number of optional
trains that become mandatory if chosen.

On the other hand, the model is going to be extended to better capture the specifics of
railway operations, e.g. by including mandatory buffer times, introducing capacity restrictions to
ensure stable operations or considering basic measures for node capacity restrictions. Apart from
functional changes, the computational results and especially the failure to calculate a solution
for the second step of the fourth test case show that performance improvements are necessary.
To reduce optimization time, both aggregation and decomposition algorithms will be evaluated
and implemented in the future.
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