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1 INTRODUCTION

Traffic modeling is a useful tool for developing policies aimed at mitigating congestion problems
that many cities face worldwide. Aggregated traffic models based on the Macroscopic Fundamen-
tal Diagram (MFD) (Geroliminis & Daganzo, 2008) present promising prospects in this direction.
The application of these models requires the partitioning of urban networks, represented as a
sequence of directed links, into a set of connected regions where all vehicles travel at similar
average speeds. The MFD encapsulates the relationship between the average travel speed and
the accumulation of vehicles in each region during a given time interval. MFD-based models
mimic the dynamics as exchange flows between adjacent regions.

An important question is how to best partition urban networks into regional networks. On
one hand, the partitioned regions should have reasonable sizes (i.e. it is undesirable to have
a region with 10 intersections next to one with 1000 intersections), and be topologically fully
connected, compact and well separated (i.e. non overlapping regions). On the other hand,
traffic conditions within each region should be approximately homogeneous (i.e. congestion
should be approximately homogeneous over the region). Several authors have discussed different
methodologies for partitioning urban networks for MFD applications. Ji & Geroliminis (2012)
were the first to implement a Normalized Cut algorithm to partition urban networks for MFD
models. Saeedmanesh & Geroliminis (2016) proposed a model based on the “snake’s similarity”.
The model starts with a single road, and then iteratively adds roads with close similarity values
to the “snake”. Then, Symmetric Non-negative Matrix Factorization is used for partitioning the
urban network. This method ensures fully connected regions, but not necessarily regions that
are compact and well separated. Lopez et al. (2017) showed that the K-means algorithm results
in lower within-cluster variances than the Normalized Cut and DBSCAN methods to partition
urban networks, therefore offering better performance in comparison with the two previously
introduced methods. Casadei et al. (2018) proposed a spatiotemporal algorithm that ensures
the consistency of travel times between the urban and regional networks. Ambiihl et al. (2019)
used real traffic data. They did the partition using random walks along the urban network
selecting the one that minimizes the scatter on estimating the regions’ MFDs. While some of
these approaches ensure fully connected regions, they fail in most cases to deliver regions of
reasonable sizes, compact and not overlapping.
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Recently, Batista et al. (2021) utilized Gaussian Mixture Models (GMMs) to partition urban
networks by clustering a data set consisting of the Cartesian coordinates of the nodes. GMMs
assume that the underlying density distribution of the data can be modeled as a (convex) linear
combination of K Gaussian components. In this application of GMMs, each Gaussian compo-
nent represents a network region. As part of the clustering problem, the optimal number of
components K (i.e. regions) needs to be determined. The authors applied the GMMs in two
steps to partition the whole metropolitan area of Munich (Germany). First, the authors fit their
data with multiple different GMMs covering all possible values of K between 1 and 200. The
authors then computed the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC) for each fit, and selected the value of K so as to minimize either the AIC or
BIC. The final partitioning was determined by the GMM fit for the selected value of K. This
partitioning approach enables the extraction of regions that respect the appropriate topological
features (i.e. in terms of size, compactness, connectivity, and separability) for the MFD appli-
cations. However, we have since found that this methodology for selecting the optimal K is
confounded by the many symmetries in the likelihood function because of the unidentifiability
of the model components (e.g. the “label switching problem” is one type of unidentifiability).
Specifically, the regularity conditions that validate the AIC and BIC approximations do not hold
for GMMs as they require the model components/parameters to be identifiable (see Chapter 7 in
Frithwirth-Schnatter et al. (2018)), which explains why Batista et al. (2021) found that neither
the AIC or BIC achieve a global minimum for a reasonable range of K. This paper proposes an
alternative methodology that performs model selection by computing the Bayesian evidence for
each value of K, and selects the K that yields the greatest evidence. This naturally penalises
models with more components (and parameters). We also present some preliminary results from
applying the proposed methodology to partition the network of Innsbruck (Austria).

2 METHODOLOGICAL FRAMEWORK

GMDMs fall into the class of unsupervised machine learning models, that can also be used for
clustering data. Let us denote our data set of N palrs of Cartesian coordinates, with one pair for
each node in the urban network, as D = {(x],y])}j 1 - Next, for a GMM M with K compo-
nents, let fi(z,y) represent the (density of the) k-th Gaussian component with parameter vector
0). Then the probability density function (PDF) of a bivariate random variable G distributed
as Mg can be written as:

K
fG(xay):Z¢kfk($7y) (1)

k=1
where ¢ is the weight for the kth component. The weights must satisfy ¢p > 0 for all
k, and Zszl ¢r = 1. We gather the full set of parameters for Mg into the single vector
O = (P1,. 0K, 01, ...,0K).
Assuming that the data D are all independently drawn from the PDF of G, then the likelihood
function £ (@) can be written as:

N K
P(D‘@K,MK) @K = H Zﬁbkfk xjvy] (2)

Via Bayes Theorem, the posterior distribution of @ may be computed from:

P(D|Ok, Mg) P(Ok |Mk) L(Ok)(Ok)
POk |D, Mg) = = 3
where I (@) and Zk are the prior parameter distribution and the Bayesian evidence, respec-
tively. The Bayesian evidence is computed as:

Zi = P(D| Mx) = [ £(Ox) 11(O) dO (4)
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Finally, again using Bayes theorem, the posterior probability of model Mg from a set of models
{Mi, My, ..., Mg}, where 1 < K < Q, is given by:

P(D|Mg) P(Mx) _ Zx Vg
P (D) Y970,

P (Mg |D) = (5)

where ¥; = P (M;) is the prior probability of the ith model. The optimal value of K then
corresponds to the model that maximises P (Mg | D).

The integral in Equation 4 can only be performed numerically, and even then it is very
difficult. Nested Sampling (Speagle, 2020), unlike other Monte Carlo Markov Chain sampling
methods, is able to perform these integrations and compute the Zg.

For this, we need to specify the model fully and adopt appropriate priors on the model
parameters. We model each component of the GMM as a radially symmetric Gaussian profile
with free parameters 0y, = (¢ i, Yo ky Ok). Since we are not using any prior information to guide
the network partitioning, we adopt non-informative priors on all parameters. For the “location”
parameters z.j and y.x, we adopt independent Uniform priors, and for the “scale” parameters
ok, we adopt independent Uniform priors on Inog. With a similar motivation, we use a flat
Dirichlet prior for the ¢ parameters. We are currently investigating the use of sorted priors for
the ¢y to help remove multi-modality from the posterior (Buscicchio et al., 2019). Finally, we
assume a Uniform prior on the ¥; (while we are also investigating an exponential prior on the
U, to further promote sparseness in the selected model).

3 PRELIMINARY RESULTS AND DISCUSSION

This section discusses some preliminary results. In particular, we discuss a preliminary validation
of the full Bayesian treatment from Section 2 against the GMM fitting method described in
Batista et al. (2021). For a low number of components, both approaches should provide consistent
estimates of the parameters of the Gaussian components (i.e. weights, locations, and sigmas). For
this purpose, we set K = 5 components and determine the static partition of the urban network
representing the city of Innsbruck (Austria). This network was retrieved from OpenStreetMaps
(OpenStreetMap contributors, 2020), and consists of 1992 nodes and 4448 links. Table 1 lists
estimates of the weights, locations, and sigmas of each of the five Gaussian components, for the
GMM fitting method described in Batista et al. (2021) and for our proposed Bayesian approach.
Figure 1 shows the Innsbruck network partitioned into the 5 components/regions.

As expected, from Table 1, we can observe that both approaches provide similar estimates
of the region locations (Zck,¥ck), showing their consistency. This happens because for a low
number of components of K = 5, we have a multi-modality of 5! = 120'. This means that we
still have a (relatively) low level of complexity in the topology of the log-likelihood surface, and
the Expected-Maximization algorithm used for maximizing the log-likelihood function in the fits
described in Batista et al. (2021) converges, in general, to the global maximum. However, the
number of local maxima increases with at least K!. This increases the topological complexity
of the log-likelihood function, and the Expected-Maximization algorithm gets stuck more often
in sub-optimal solutions. The full Bayesian approach that we propose with Nested Sampling
does not suffer from this limitation, since it explores the full posterior probability surface. We
will discuss these advantages of our modelling procedure in the full paper. The partitioning in
Figure 1 depicts that the subnetwork representing region 4 is not fully connected. In the full
paper, we will also discuss how geographical features of the network (e.g. the presence of rivers
which can act as natural borders) should be utilized as a first partitioning level before applying
our proposed model. In this step, we can adopt for example priors based on those features (e.g.
geographical features).

'The notation "!" refers to the factorial of 5, i.e. 5! =5-4-3-2.1 = 120.
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Table 1 — Parameter estimates determined for each Gaussian component, using the GMM fitting
method described in Batista et al. (2021) and the full Bayesian treatment.

GMM (Batista et al., 2021) GMM Bayesian

Pk Tk Ye k Ok Ok Tk Ye,k Ok

1 0.242 683222 5237910 956 0.114 684005 5238256 1084
0.170 678967 5236958 814 0.179 679007 5236953 821
0.335 681464 5237387 969 0.397 681695 5237427 988
0.139 685247 5239092 925 0.262 685728 5239891 415
0.114 675817 5236282 624 0.049 675818 5236278 623

Region

U= W N

0 35 7.0 10.5 14.0

Figure 1 — Innsbruck (Austria) city network partitioned into 5 regions.
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