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We consider the optimization problem of determining schedules for shipments on known paths
within a terminal network in order to minimize vehicle transportation costs. We refer to this

problem as the Service Network Scheduling Problem and present two mixed integer programming
formulations of that problem. The first is based on the classical idea of a time-expanded

network. The second formulation is new and is based on sets of shipment consolidations. We
show both analytically and computationally that the consolidation-based formulation can be the
superior of the two, but that its enumerative nature renders it ineffective for instances with

large numbers of shipments. Thus, we present a column generation-based algorithm for solving
the consolidation-based formulation that relies on solving relaxations that are integer programs.

We demonstrate the superior performance of this algorithm with a computational study.
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1 INTRODUCTION

Consolidation carriers are transportation companies that transport shipments that are small
relative to vehicle capacity. Consolidation carrier is an umbrella term that covers companies
participating in one (or both) of the less-than-truckload freight and small parcel industries. As
transportation exhibits economies of scale, profitability for such companies is driven by consol-
idation. Specifically, dispatching vehicles that transport multiple shipments, each potentially
associated with a different customer. Such consolidation is typically enabled by routing ship-
ments on paths through a network of terminals as opposed to directly from customer origin to
destination, as is often done in full truckload transportation.

More precisely, a path for a shipment refers to the sequence of terminals it visits, with the
sequence beginning at the origin terminal for the shipment and ending at its destination terminal.
We also refer to these paths as consisting of one or more transportation moves, where a trans-
portation move refers to physical transportation, either by a shipment or a capacitated vehicle,
between terminals in the network. Transportation moves executed by a vehicle incur a cost that
is independent of the shipments it transports. Lastly, the schedule for a path prescribes dispatch
times for each of its transportation moves. These schedules in turn imply vehicle dispatch times
on those same moves. Achieving high levels of consolidation, and low transportation costs, re-
quires determining paths for shipments through such networks, and schedules for those paths,
that enable multiple shipments to dispatch on the same transportation move at the same time.
Jointly determining these paths and schedules is typically seen as a tactical planning problem
and is modeled as a variant of the Scheduled Service Network Design Problem (SSNDP) (Crainic
et al. , 2021).

A carrier may seek to keep shipment paths constant over some planning horizon (e.g. a
month), in order to maintain consistency with the operations that support the execution of
those paths. However, for some types of carriers (e.g. road-based Less-than-truckload freight
transportation carriers) there is often flexibility, operationally-speaking, with respect to the
scheduling of paths. In the near-term when more accurate forecasts of shipment volumes are
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known, it may be willing to adjust the schedules for those paths if doing so leads to greater
consolidation. Thus, we consider the problem of optimally determining shipment path schedules
in order to minimize total vehicle transportation costs. We refer to this problem as the Service
Network Scheduling Problem (SNSP).

We propose two mixed integer programming formulations of this problem. The first is based
on the classical idea of a time-expanded network (Ford & Fulkerson, 1958, 1962). The second
is based on enumerations of consolidations of shipments. We prove the equivalence of the for-
mulations. We also show both analytically and computationally that the consolidation-based
formulation can be the stronger of the two, but that its enumerative nature renders it computa-
tionally ineffective for instances based on large numbers of shipments.

Thus, we present an algorithm for solving the consolidation-based formulation that does not
enumerate sets of consolidations a priori, but instead dynamically in the course of its execution.
Clearly, one framework for such an algorithm is Branch-and-Price (Barnhart et al. , 1998, De-
saulniers et al. , 2006). As such an algorithm involves solving linear relaxations of a formulation,
many of the technical advancements of today’s solvers at solving integer programs is lost. We
present an algorithm that operates in a fashion that is similar to Branch-and-Price, in that at
each iteration it solves an optimization problem and then uses information from the solution to
that optimization problem to determine variables to add. It differs from Branch-and-Price in that
the optimization problem solved is an integer program that is formulated so as to be a relaxation
of the original problem. We refer to this algorithm as IP − ColGen, or, Integer Programming-
based Column Generation. We prove the correctness of this algorithm and demonstrate with a
computational study its superiority to solving the static formulation. We believe this algorithm
and formulation technique can be employed in formulations of and solution methods for the more
general SSNDP, something we will discuss during the presentation.

2 Methodology

In this section, we present the consolidation-based methodology for this problem. We omit the
time-expanded network formulation for brevity and because it is classical. We model the terminal
network and moves within that network with the directed network D = (N ,A), where N is a set
of nodes that model terminals in the network and A is a set of arcs that model transportation
moves within that network. Formally, the set A consists of pairs (i, j), i, j ∈ N that model
physical travel from terminal i to terminal j. Associated with each arc (i, j) ∈ A is a travel time
denoted by τij , a per-vehicle capacity denoted by uij , and a per-vehicle cost denoted by fij .

We model shipments that must be routed through the network with the set K of commodities.
Associated with each commodity k ∈ K is an origin terminal, ok, and destination terminal, dk.
We let ek denote the earliest time at which commodity k is available at its origin terminal,
ok, and lk denote the latest time at which k can be delivered to its destination terminal, dk.
Lastly, associated with commodity k is a size qk quoted in the same unit as the capacity factors
uij , (i, j) ∈ A associated with arcs.

Recalling that our problem presumes that paths for shipments are known, we let pk =
vk1 , ..., v

k
rk

represent the sequence of nodes from N in the path of commodity k ∈ K, with vk1 = ok
and vkrk = dk. We let P = ∪k∈Kpk denote the set of all such shipment paths. Relatedly, for
commodity k we let the node set N k ⊆ N contain the nodes vki in that path and the arc set
Ak ⊆ A contain the arcs (vki , v

k
i+1) in that path. We also let Kij = {k ∈ K : (i, j) ∈ Ak} denote

the set of commodities with a path that contains arc (i, j) ∈ A. Lastly, we note that given the
path pk and earliest available and latest due times ek, lk for commodity k, one can derive a time
window [αk

v , β
k
v ] during which k can be at each node v in its path.

The proposed formulation of the SNSP that is based on sets of possible consolidations on each
arc, (i, j) ∈ A. To define the formulation we let Cij = {C1, . . . , Cnij}, Cg ⊆ Kij ∀g = 1, . . . , nij ,
denote all sets of commodities that can dispatch on arc (i, j) at the same time. Recalling that
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[αk
i , β

k
i ] denotes the time window during which commodity k must depart from node i, we have

that Cg = {kg1 , . . . , k
g
mg} ∈ Cij ∀g = 1, . . . , nij if and only if ∩mg

q=1[α
kq
i , β

kq
i ] 6= ∅. In words,

a consolidation is feasible on an arc if and only if the time windows for all commodities in
that consolidation overlap in at least one time point. That said, Cij also contains all singleton
sets. Namely, if k ∈ Kij , then there exists g ∈ [1, nij ] such that Cg = {k}. In addition, we
let C = ∪(i,j)∈ACij . Throughout this paper we will refer to “consolidation Cg” as shorthand for
the set of commodities {kg1 , . . . , k

g
mg} contained in that consolidation. Regarding data elements

associated with these consolidation sets, we let the attribute φkC ∈ {0, 1}, k ∈ K, C ∈ C represent
whether k ∈ C. We also let sC = d

∑
k∈C qk
uij

e represent the number of vehicles needed to transport
consolidation C.

To model the SNSP, we let the binary variable wC indicate whether the consolidation con-
sisting of commodities in set C ∈ Cij traveling together on arc (i, j) ∈ A is chosen. Note this
choice implies that the commodities must dispatch at the same time. We let the integer variable
yij represent the number of vehicles that dispatch on arc (i, j) ∈ A. We let the decision vari-
ables γk

vki v
k
i+1
, i = 1, . . . , nk − 1 prescribe the time at which commodity k dispatches on the arc

(vki , v
k
i+1), i = 1, . . . , nk − 1 on its path. With these sets and decision variables, we define the

optimization problem Cons-SNSP(C), as

zCons(C) = minimize
∑

(i,j)∈A

fijyij (1)

subject to∑
C∈Cij

φkCwC = 1 ∀k ∈ K, (i, j) ∈ Ak, (2)

∑
C∈Cij

sCwC ≤ yij ∀(i, j) ∈ A, (3)

γkij − γk
′

ij ≤Mkk′
i (1−

∑
C∈Cij

φkCφ
k′
CwC) ∀(i, j) ∈ A, k, k′ ∈ Kij , (4)

γk
vki v

k
i+1

+ τvki vki+1
≤ γvki+1v

k
i+2

∀k ∈ K, i = 1, . . . , nk − 2, (5)

αvki
≤ γk

vki v
k
i+1
≤ βvki ∀k ∈ K, i = 1, . . . , nk − 1, (6)

γk
vki v

k
i+1
∈ N ∀(vki , vki+1) ∈ pk, k ∈ K, (7)

wC ∈ {0, 1} ∀C ∈ C, (8)
yij ∈ N ∀(i, j) ∈ A. (9)

The objective seeks to minimize the total costs associated with vehicle moves that transport
consolidations of shipments. Constraints (2) ensure that a consolidation is chosen for each
commodity on each arc in its path. Constraints (3) ensure that sufficient capacity is paid for
on each arc to support the consolidations chosen for that arc. Constraints (4) ensure that all
commodities in the consolidation chosen for an arc dispatch at the same time. Constraints (5)
ensure that the dispatch times for arcs on the path of a commodity agree with their travel times.
Constraints (6) ensure the dispatch time decision variables occur within the corresponding time
windows. Constraints (7), (8), and (9) define the decision variables and their domains. While the
big-M value in constraints (4) may lead to a weak formulation, the formulation can be tightened
without rendering any solutions infeasible by setting Mkk′

i = βk
′

i − αk
i .
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3 Results

To compare the two formulations computationally, we generated a set of instances based on a
portion of the network of a United States-based LTL carrier. Specifically, we considered a portion
of the network that consists of 25 terminals (e.g. |N | = 25) and 530 physical moves between
terminals (e.g. |A| = 530). Cost, capacity, and travel time data were provided by the carrier. In
addition, the carrier provided a load plan that prescribed paths through the terminal network for
pairs of terminals (o, d) ∈ N based on their customer base at the time. We randomly generated
instances that vary in the number of commodities (100,150,200,250,300,350,400,450, and 500)
and other instance parameters.

We compare solving the consolidation-based formulation Cons-SNSP(C) with solving three
variants of the time-expanded network formulation. The first, labeled “T-E Network” consists
of solving the time-expanded network formulation over a complete time-expanded network. The
second, labeled “Reduced T-E Network” consists of solving the formulation over a reduced time-
expanded network. The third, labeled “Reduced T-E Network + Valid inequalities” consists
of solving the formulation over a reduced time-expanded network but strengthened with valid
inequalities.

Table 1 – % solved, time to termination, averaged over all instances

Method % Solved Time (sec.)
T-E Network 44.44% 4,094.54

Reduced T-E network 58.33% 3,080.16
Reduced T-E Network + Valid inequalities 66.67% 2,531.47

Consolidation 77.78% 1,770.94

However, a downside of the consolidation-based formulation is its enumerative nature. Thus,
we have also developed a column generation-based algorithm to solve this formulation wherein
consolidations are generated dynamically during the course of its execution. We will present
this algorithm in detail during the talk. However, in Table 2 we report results from executing
this algorithm on the same instances discussed above. We see that the algorithm dramatially

Table 2 – Comparison of IP − ColGen with Cons-SNSP(C) by number of commodities

# Commodities 100 150 200 250 300 350 400 450 500 Average
IP-ColGen
% Solved 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Time (sec.) 0.52 1.10 1.58 2.79 6.52 8.16 28.56 75.16 131.18 28.40
Cons-SNSP(C)

% Solved 100.00% 100.00% 100.00% 100.00% 75.00% 75.00% 100.00% 25.00% 25.00% 77.78%
Time (sec.) 0.52 1.41 3.00 5.43 1,807.23 1,857.88 606.80 5,462.01 6,194.21 1,770.94

outperforms solving the static, a priori formulation.
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