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1 INTRODUCTION

The growing demand for e-commerce has led to a substantial increase in the challenges faced
in traditional delivery. Nowadays, the sharing economy allows to rapidly connect supply and
demand which can be used to overcome these challenges. Such a system where last-mile delivery
is outsourced to a large number of individuals is referred to as crowd-shipping. In a crowd-
shipping system, individual couriers perform deliveries on their pre-existing route and thereby
contribute to the last-mile delivery of small parcels. Crowd-shipping has numerous advantages
for customers, retailers and the society. Both customers and retailers are offered a fast, flexible
and cheap alternative of delivery. Society benefits mostly from the reduced environmental im-
pacts as well as reduced traffic congestion. According to Generation IM et al. (2020), the vast
majority of the emissions in the whole logistics chain are currently generated by last-mile delivery.

In the literature, substantial research has been done on the operational problems that arise
in crowd-shipping systems. For a review on the recent academic research and an overview of
the operational challenges, the reader is referred to Le et al. (2019) and Pourrahmani & Jaller
(2021). These operational challenges mostly focus on the matching of parcels to crowd-shippers
(Li et al., 2014) and the joint problem of crowd-shipping and vehicle routing (Archetti et al.,
2016).

As the availability of supply is a key determinant of the performance of a crowd-shipping sys-
tem, parcels may be stored at intermediate hub locations (or transshipment points) such that
they are easily reachable by potential crowd-shippers. Wang et al. (2016) consider a fixed set
of pop-stations distributed around the city where crowd-shippers can perform pickups. Raviv &
Tenzer (2018) and Macrina et al. (2020) consider a crowd-shipping system where crowd-shippers
can pickup parcels either from the depot or from transshipment points. Their results show the
economic benefits of such transshipment nodes. Similarly, Yıldız (2021) also considers transship-
ment points but use a dynamic programming algorithm to solve their problem. Contrary to the
fixed transshipment points in the previous works, Mousavi et al. (2020) consider mobile depots.
They do not consider the routing of vehicles, but they determine the optimal location of these
mobile depots under uncertainty in supply.
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Contrary to the majority of the literature that have studied operational problems, in this paper
we consider the strategic planning problem of network design. We develop a framework that
allows to determine the best hub locations for a crowd-shipping system in a large urban area
considering uncertainty in supply and demand. This is a bi-level problem which is specifically
difficult as the optimal hub locations (upper level) depend on the potential to assign parcels to
crowd-shippers (lower level). We solve the lower level assignment problem through a Continuum
Approximation Approach (CAA), allowing us to solve the upper level with an efficient heuristic.
We compare our approach to a simulation-optimization approach, to evaluate the objective and
computation time needed to attain this objective. The performance is evaluated using a discrete
event simulator based on a part of the city of Washington DC.

2 METHODOLOGY

2.1 Continuum Approximation of Lower Level

We consider a network split into R regions. Expected daily demand for small parcels in ev-
ery region is equal to d̂r. Potential crowd-shippers travel between regions such that the daily
average number of crowd-shippers travelling between regions i and j is equal to λ̂ij . Potential
crowd-shippers are assumed to have a maximum detour τ they are willing to make to pickup and
deliver a parcel. We define parameter eijhr which is equal to 1 if a crowd-shipper with origin i
and destination j can pickup a parcel at hub h and deliver it to the final destination in region r,
and 0 otherwise. When multiple hubs are opened, the main difficulty is that both demand and
supply have to be split over the various opened hubs. We define ẽijr identifying whether a crowd-
shipper can pickup a parcel from at least one open hub. Specifically: ẽijr = min(1,

∑
h∈H eijhr).

We define sij =
∑

r∈R ẽijrd̂r as the total demand that can potentially be served by crowd-
shippers going from i to j. For the sake of the approximation, we assume that a crowd-shipper
is equally likely to choose any of the parcels he/she can feasibly deliver. Following from this, the
probability that he/she picks a parcel with destination region r is equal to d̂r

sij
if ẽijr = 1 and 0

otherwise. We can then consider all potential crowd-shippers to obtain the following estimated
served demand:

yr =
∑
i,j∈R

ẽijrλ̂ij
d̂r
sij

∀r ∈ R. (1)

It is possible that crowd-shippers with different origin-destination pairs are assigned to the same
parcel-destination region r. As this could lead to an overestimation of served demand in that
region (yr > dr), we take into account that at most d̂r demand can be delivered to a region r.
Therefore, we set the estimate to

zr = min(d̂r, yr) ∀r ∈ R. (2)

Especially if supply is high, by overestimating yr in region r (i.e. yr > d̂r), it is likely that yr′ for
another region r′ ̸= r will be underestimated. Therefore, we use an iterative process to ensure
that this overestimation is accounted for in the other regions. We consider the leftover demand
lr = max(0, yr − d̂r) and split it evenly over the potential suppliers. Similar to the assignment
of parcels to crowd-shippers, we assume that every crowd-shipper that can be feasibly assigned
to a region r (ẽijr = 1), is equally likely to assigned to one of the leftover demand units in lr.
Therefore, the lr leftover demand units are split over the origin-destination pairs proportional
to the number of suppliers that could be feasibly assigned to region r. We define the leftover
supply as follows:

λ̂′
ij =

∑
r∈R

lr
ẽijrλ̂ij∑

i,j∈R ẽijrλ̂ij

. (3)
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Thereby, we define the unserved demand d̂′r = d̂r − zr. All demand units that are already
expected to be served by previously assigned crowd-shippers no longer need to be considered
and are therefore disregarded. We then compute yr according to Equation (1), but now using
λ̂′
ij and d̂′r as inputs in stead of λ̂ij and d̂r. Using these we find an additional portion of demand

which can be served and we update the estimated demand served and the leftover demand as
follows:

zr = min(d̂r, zr + yr) ∀r ∈ R. (4)

lr = max(0, yr − d̂′r) ∀r ∈ R. (5)

This iterative process can be repeated until the leftover demand lr is zero for all regions r ∈ R.

2.2 Large Neighborhood Search for Upper Level

To find the best set of hub locations (i.e. to solve the upper level problem), a Large Neighborhood
Search (LNS) heuristic is used to explore the search space. For every potential set of hub
locations, the CA approach is used to evaluate the quality efficiently which is substantially faster
than a simulation or optimization approach. Repair and destroy operators are based on the
expected quality of a hub in a single-hub system and the similarity between hubs, that are all
pre-computed and used as inputs to the heuristic. A multi-start heuristic is used to explore a
large search space.

3 RESULTS

In this section we evaluate the performance of our CA approach to finding the optimal hub
locations in an urban crowd-shipping system. Our results are obtained through a case study
based on a part of the city-center of Washington DC consisting of 90 regions. An approximation
of the population of every region has been made using Census Reporter (2021) data, which
has been used as a proxy for demand. Historic system data from the Capital Bikeshare (2020)
database has been used as a proxy for the supply of bicycle-based crowd-shippers.

3.1 Comparison of CA Approach to Simulation-Optimization Approach

We evaluate the performance of our algorithm by comparing the CA-based solution algorithm
proposed in this work to a well-known simulation-optimization approach. For the simulation-
optimization approach, we use the same algorithm but the continuum approximation is replaced
by performing 2 simulations using a minimal detour assignment strategy. We compare the two
methods in terms of objective value (i.e. number of parcels delivered by crowd-shippers) and
computation time. The objective value is obtained through a run of 10 simulations using the
hubs that are obtained by the algorithms.

The results are displayed in Figure 1. The left-hand panel displays that the objective of the
CA method is extremely close to that of the simulation-optimization method. The computation
times of each of the methods are displayed in the right-hand panel of Figure 1. We observe
that the CA approach is significantly faster than the simulation-optimization approach. With
the CA approach, we are able to determine the best set of hubs within approximately 1 minute.
The computation time of the simulation-optimization method is between 10 and 25 times higher,
depending on the supply level. For the simulation-optimization method, the computation time
increases proportionally to the number of supply units, whereas the computation time of the
CA approach is only marginally influenced by the number of supply units. The objective of the
simulation-optimization method can be further improved by increasing the number of simulation
runs, but this comes at a cost of even higher computation times.
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Figure 1 – Comparison of CA and simulation-optimization method

4 DISCUSSION

Our results show that the CA approach obtains hubs of similar quality compared to those ob-
tained by a simulation-optimization approach, but the CA approach is much less costly in terms
of computation time. Especially for large urban networks, where the number of regions and ex-
pected supply and demand are high, the CA approach shows to be extremely useful. Results on
the network show the importance of incorporating supply flow in the decision of hub locations, as
the optimal choice of hubs is not necessarily a central location, but more importantly a popular
origin location of potential crowd-shippers, such as a train station.

In the full paper, we further evaluate the quality of our CA approach by comparing the ob-
jective value directly to that of a static and dynamic assignment problem. On top of this we
perform extensive sensitivity analysis and use the CA approach to design a dynamic assignment
strategy that outperforms existing dynamic assignment strategies.
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