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1     INTRODUCTION 
 
Year after year, airlines offer new air services, some of them in route competition with other 

carriers. Planning and launching scheduled air services requires time and money of the operating 

carrier but also at the served airports. There might be substantial support through tax payers’ 

money as well. Nevertheless, new air services are often abandoned within the first years. Some are 

discontinued shortly after the start even without exceptional events such as the COVID pandemic, 

although the respective carrier as a whole continues to operate or competing services by other 

carriers sustain on a given route. Accordingly, the important question for airlines, airports and 

other stakeholders arises as to the key factors of service survival. The present paper addresses this 

question. We analyze the survival of direct services on intra-European routes opened from 2013 to 

2018. Our aim is to examine how airline, airport, route and service attributes affect the probability 

of service survival over time. Covariates include the airline business model and route competition. 

Our empirical analysis ends in 2019, the last regular year for the aviation industry before the 

COVID crisis led to an exceptionally high number of suspended services (Suau-Sanchez et al., 

2020). 

 

Research on airline competition and market entry following the deregulation of passenger airline 

markets (e.g., Borenstein, 1992) do not consider the survival probability of individual direct 

services. Same holds for applications of graph theory to airline networks (e.g., Roucolle et al., 

2020). With a case study approach, Lohmann & Vianna (2016) examined how aviation and non-

aviation factors affected route suspension in Australia between 2008 and 2013. de Wit & Zuidberg 

(2016) estimated discrete choice models of route termination in the networks of the four largest 

European low-cost carriers. They found that distance, the number of seats offered, market share, 

seasonality and route age have a significant effect on the chance of route termination. Calzada & 

Fageda (2019) mainly investigated route expansion in the European air transport market in the 

period 2002 to 2013, but also considered a sample of active routes and the factors determining 

their discontinuity using a logit model. More recently, Manello et al. (2021) linked route closures 

to the economic development of European regions using socio-economic and airport 

characteristics, however, without specification of airline or service attributes. 
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Our aim is to fill a gap in the literature by estimating probabilities of service survival on intra-

European routes with a set of airline, airport, route and service characteristics. We estimate 

variants of a Cox proportional hazard model with data from the OAG airline schedules database. 

Among other findings, we derive a significant dependence of the service survival rate on the 

airline business model. Our results should be of particular interest for airline and airport managers 

not to invest time and money in the launch of scheduled air services that are more likely to fail 

than others. 

 

2     METHODOLOGY 
 

2.1  Model Formulation 
 

The Cox proportional hazards model (Cox, 1972) makes a parametric assumption concerning the 

effect of the covariates on the hazard function, but no assumption regarding a particular form of 

the hazard function itself. This approach suits us as we are primarily interested in the effects of the 

covariates, not in the shape of the hazard function itself. The hazard function for the Cox 

proportional hazards model can be specified as: 

 

 λ(t|X) =  λ0(t) exp(Xβ) =  λ0(t) exp(β1X1) ⋯  exp (βkXk) ( 1 ) 

 

This expression provides the hazard function for air services at time 𝑡 dependent on the covariate 

vector 𝑋 of 𝑘 explanatory variables. The hazard function denotes the rate or probability of an event 

(termination of a service) in the interval of infinitesimal length [𝑡, 𝑡 + Δ𝑡] conditional on the 

covariates 𝑋. The model assumes multiplicative effects of the covariates on the baseline hazard 

function 𝜆0(𝑡), i.e., the baseline hazard function that is time-dependent does not depend on the 

covariates itself. The influence of the covariates is expressed by the hazard ratios exp(𝛽𝑗) that are 

assumed to be constant over time. If 𝛽𝑗 is estimated close to 0, the hazard ratio exp(𝛽𝑗) ≈ 1, i.e., 

the covariate 𝑗 is predicted to have no significant influence on the hazard rate. Similarly, 𝛽𝑗 > 0 

results in a hazard ratio exp(𝛽𝑗) > 1 and the predictor increases the risk of an event. For a 

covariate predicted to decrease the risk or increase survival probabilities, 𝛽𝑗 < 0 or exp(𝛽𝑗) < 1. 

 

The Cox model is a standard method, e.g. in medical studies to analyze the effects of different 

covariates such as different treatments or physical characteristics. The subjects in our case are non-

stop air services between two airports provided by a specific airline. The subjects are followed up 

regularly during the study with their status and their characteristics being recorded. We are 

interested in the event of termination of the air service by the respective carrier. After the event, 

the subjects are no longer followed-up. Hence, we do not consider services interrupted for more 

than one year. We check for the first week in October each year whether a service is continued or 

terminated. In order to exclude the special effects of the ongoing COVID crisis, we only record 

schedule data until 2019. We are therefore making censored observations, as we cannot observe 

the further survival of the services that were still active in October 2019. As we examine new air 

services opened from 2013 to 2018, truncation is of no relevance. 

 

We calibrate different models to evaluate model quality and potential differences in termination 

risk stemming, for example, from business models or specifics of individual airlines. First, we fit a 

single model including all business models (mainline and low-cost) and analyze effects of the 

covariates commonly shared between different carriers (Model 1). We expect the airlines’ 

particularities to influence the risk but also expect differences due to the airlines’ business models. 

In a stratified model, a common extension to standard Cox models, we estimate separate baseline 

hazards  𝜆0,1(𝑡),  𝜆0,2(𝑡), …  for each level of the stratification variable: 

 

https://en.wikipedia.org/wiki/Survival_analysis#Cox_proportional_hazards_(PH)_regression_analysis
https://en.wikipedia.org/wiki/Survival_analysis#Cox_proportional_hazards_(PH)_regression_analysis
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 λs(t|X) =  λ0,s(t) exp(Xβ) =  λ0,s(t) exp(β1X1) ⋯  exp (βkXk), ( 2 ) 

 

where 𝜆𝑠(𝑡|𝑋) is the hazard function for subjects belonging to stratum 𝑠. While the baseline 

hazard depends on the stratum, the proportional hazards do not. Hence, we model specifics of the 

homogeneous group in a stratum in the baseline hazard and assume that effects of the covariates 

influence the hazard independently of the stratum. We build models that include the business 

model and the carriers as stratification variables (Model 2 and Model 3). In order to analyze 

potentially different effects of the predictors, we continue to build separate models that only 

contain subsets of a single business model (Model 4 / mainline and Model 5 / low-cost). To 

account for effects particular to individual airlines, we further stratify the airlines in each subset in 

Model 6 (mainline) and Model 7 (low-cost). 

 

2.2  Data and Covariates 
 

Our data contains 18,836 records of 5,820 distinct intra-European city pairs (non-directional), 

which are operated by 100 airlines in continuous operation during the entire study period up to the 

year 2019. 18 of these airlines are categorized in the OAG database as airlines with a low-cost 

business model (3,753 city pairs), while the other 82 airlines are classified as mainline carriers 

(2,587 city pairs). Table 1 provides an overview of the covariates analyzed. 

 

Table 1 – Description of Covariates 

Variable Description 

BusModel Airline business model (mainline or low-cost) 

AirlineSize 

Airline size as available seat kilometers offered world-wide (ASKs, in 

millions) 

Distance Route distance in NM 

Frequency Service frequency offered by respective airline 

CapacityShare Market share of the respective carrier on city pair by seat capacity 

ArrApFreq Airline presence at the arrival airport (# frequencies) 

DepApFreq Airline presence at the departure airport (# frequencies) 

ArrApFreqShare Airline relative presence at the arrival airport (share of all frequencies) 

DepApFreqShare Airline relative presence at the departure airport (share of all frequencies) 

LargerApFreqTotal Airport size in terms of total frequencies (world-wide) for the larger airport 

SmallerApFreqTotal Airport size in terms of total frequencies (world-wide) for the smaller airport 

 

3     RESULTS AND DISCUSSION 
 
The results of the different models are detailed in Table 2. We state the proportional hazards 

estimated and additionally provide the significance levels. Model 1 shows a significantly increased 

likelihood of service termination when airlines follow a mainline instead of a low-cost business 

model. This is a rather surprising result, considering that low-cost carriers’ footloose strategies 

have been emphasized in the academic literature (e.g., Graham, 2013). Mainline carriers may close 

unprofitable new services early before they become established with increasing demand. Airline 

size is not a differentiator, a somewhat counter-intuitive finding as well. However, this might 

largely depend on our assumption to only examine new air services by carriers with ongoing 

operations. Due to modal competition, increasing route distance has a positive impact on the 

survival probability, a finding in line with de Wit & Zuidberg (2016) and Manello et al. (2021). 

Frequency has a positive impact as well. Route competition between carriers measured by capacity 

shares, decreases termination risk only in Model 5, i.e., for low-cost carriers. Hubbing effects for 

mainline carriers strongly increase service survival as shown in airlines’ relative presence at either 

endpoint. Effects of the absolute size of the respective arrival and destination airports are limited. 
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Table 2 – Estimated Proportional Hazards 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

BusModel 1.9634 NA NA NA NA NA NA 

 

(***) 

   

0 

  AirlineSize 1.0000 1.0000 NA 1.0000 0.9999 NA NA 

 

(*) (**) 

  

(***) 

  Distance 0.9995 0.9995 0.9995 0.9995 0.9996 0.9995 0.9995 

 

(***) (***) (***) (***) (***) (***) (***) 

Frequency 0.9405 0.9406 0.9339 0.9465 0.9304 0.9358 0.9330 

 

(***) (***) (***) (***) (***) (***) (***) 

CapacityShare 0.9503 0.9542 0.9611 1.0536 0.8154 0.9673 0.9448 

     

(**) 

  ArrApFreq 0.9992 0.9992 0.9993 0.9994 0.9990 0.9996 0.9989 

 

(***) (***) (***) (***) (***) (***) (***) 

DepApFreq 0.9992 0.9992 0.9992 0.9996 0.9984 0.9996 0.9985 

 

(***) (***) (***) (***) (***) (***) (***) 

ArrApFreqShare 0.8186 0.8145 0.9264 0.5249 1.4594 0.6924 1.2159 

 

(**) (**) 

 

(***) (**) (**) 

 DepApFreqShare 0.9174 0.9146 1.1882 0.4248 2.6031 0.6818 1.9685 

    

(***) (***) (**) (***) 

LargerApFreqTotal 1.0001 1.0001 1.0001 0.9999 1.0002 1.0000 1.0001 

 

(***) (***) (**) (***) (***) 

 

(***) 

SmallerApFreqTotal 1.0000 1.0000 1.0000 0.9998 1.0001 0.9998 1.0001 

    

(**) 

 

(***) 

 Observations 18,836 18,836 18,836 7,178 11,658 7,178 11,658 

Events 2,697 2,697 2,697 1,393 1,304 1,393 1,304 

Significance levels shown in parentheses, p<0.01 (***), p<0.05 (**), p<0.1 (*) 
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