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1     INTRODUCTION 
 

Mobility-as-a-Service (MaaS) is an emerging transport model which provides access to any combination 

of travel modes through a single platform. A MaaS operator sits between travelers and TSPs, acting as 

a broker who purchases mobility resources from individual TSPs, constructs seamless transport services, 

then sells them to travelers in response to their demand. To ensure the sustainability of such platforms, 

the key challenge lies in matching travelers to TSPs so that travelers’ individual needs are satisfied, 

TSPs gain nonnegative profits and system efficiency is achieved. However, individual travelers’ travel 

requirements and valuations are not readily available and difficult to obtain. In this study, we develop 

an auction-based mobility resource allocation and pricing mechanism to elicit travelers’ true 

requirements and valuations, and solve this matching problem within the transport network context. The 

mechanism takes travelers’ strategic behavior into account and applies VCG-based pricing scheme to 

ensure incentive compatibility, individual rationality and system efficiency. We adopt a column- 

generation based solution algorithm to solve the offline (static) matching and pricing problem. For the 

online (dynamic) problem, we develop a dynamic learning algorithm to obtain near optimal solution and 

compare it to the classic greedy-based algorithm. The efficiency of the proposed mechanisms is tested 

through a case study.  

 

2     METHODOLOGY 
 

2.1  Offline auction mechanism with column generation 
 
We start by formulating and solving the offline (static) mobility resource matching problem. Consider 

a multimodal network 𝐺(𝒩, ℒ) operated by a MaaS platform where 𝒩 denotes node set and  ℒ denotes 

mode-specific link set. Each link is associated with length 𝐿𝑖𝑗 , ∀𝑖, 𝑗 ∈ 𝒩, 𝑖 ≠ 𝑗, travel time 𝑇𝑖𝑗, capacity 

𝑊𝑖𝑗, the maximum number of riders sharing a vehicle on that link 𝑅𝑖𝑗  and operational cost 𝐶𝑖𝑗. These 

links construct 𝒦  multimodal paths with heterogeneous performance, measured by travel time 𝑇𝑘 , 
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operational cost 𝐶𝑘 and weighted number of shared riders 𝑅𝑘, where 𝑇𝑘 and 𝐶𝑘 are the summation of 

𝑇𝑖𝑗 and 𝐶𝑖𝑗 of all links on path 𝑘. 𝑅𝑘 is the weighted average number of allowable shared riders of all 

links on path 𝑘. Let 𝒮 denote the set of travelers who bid for mobility service. A bid from traveler 𝑠 

includes his or her origin 𝑂𝑠, destination 𝐷𝑠, requested travel time 𝒯𝑠, preferred number of shared riders 

ℛ𝑠 and bidding price ℬ𝑠. Traveler’s requested travel time and number of shared riders are regarded as 

soft constraints, which means violation on these requirements are allowed but will lead to a loss in the 

value they can obtain. The true valuation of traveler 𝑠 towards path 𝑘 can be calculated as: 

𝑉𝑠𝑘 = 𝑉𝑠 − 𝛾𝑠 max{𝑇𝑘 − 𝒯𝑠, 0} − 𝛽𝑠 max{𝑅𝑘 − ℛ𝑠 , 0} ∀𝑠 ∈ 𝒮, 𝑘 ∈ 𝒦 (1) 

where 𝑉𝑠 is the true willingness-to-pay of traveler 𝑠 and it equals to ℬ𝑠 only if traveler bids truthfully. 𝛾𝑠 

and 𝛽𝑠 represent the unit monetary penalty of traveler 𝑠 due to late arrival and exceeding the preferred 

number of shared riders. Our goal is to maximize social welfare, defined as the total utility of all travelers 

and TSPs. Travelers’ utility 𝑢𝑠  equals to his or her true valuation obtained from traveling on the 

allocated path 𝑘 minus the payment, denoted by 𝑝𝑠, i.e., 𝑢𝑠 = 𝑉𝑠𝑘 − 𝑝𝑠. TSPs’ utility equals the total 

payments received from travelers minus the total operational costs. The social welfare maximization 

problem is then formulated as follows: 

max
𝑥𝑠𝑘

∑ ∑ (𝑉𝑠𝑘 − 𝐶𝑘)𝑥𝑠𝑘

𝑘∈𝒦𝑠∈𝒮

 (2) 

subject to 

∑ 𝑥𝑠𝑘

𝑘∈𝒦

≤ 1 ∀𝑠 ∈ 𝒮 (3) 

∑ ∑ 𝑥𝑠𝑘𝛿𝑖𝑗
𝑘

𝑘∈𝒦𝑠∈𝒮

≤ 𝑊𝑖𝑗𝑅𝑖𝑗  ∀𝑖, 𝑗 ∈ 𝒩, 𝑖 ≠ 𝑗 (4) 

𝑥𝑠𝑘 ∈ {0,1} ∀𝑠 ∈ 𝒮, 𝑘 ∈ 𝒦 (5) 

where 𝑥𝑠𝑘 = 1 if traveler 𝑠 is assigned to path 𝑘. Note that path 𝑘 is feasible for traveler 𝑠 only if it is 

between  𝑂𝑠 and  𝐷𝑠. Constraints (3) guarantee that each traveler can be allocated to at most one path. 

Constraints (4) ensure that the number of travelers on each link does not exceed the link capacity. 

Constraints (5) set the feasible domains of decision variables.  

Considering that number of decision variables associated with paths are much larger than number of 

capacity constraints of links, we adopt column generation algorithm, which has been widely applied in 

solving combinatorial optimization problems (e.g., Akyüz, et al., 2016; Gendron, et al., 2014). The idea 

is to start by solving a linear restricted master problem (RMP) with only a subset of paths, then iteratively 

we find paths that have the potential to increase the objective function and add them to the network until 

no such paths exist. Finally, we conduct the branch-and-bound process to obtain the integer solution. 

To determine the payment for each traveler, we have to ensure incentive compatibility and individual 

rationality, which means travelers bid truthfully and gain non-negative utility from using the MaaS 

service. We adopt the VCG-like payment rule: 

𝑝𝑠 = 𝑍𝑋−𝑠
∗ − (𝑍𝑋𝑠

∗ − 𝑣𝑠(𝑋𝑠
∗)) ∀𝑠 ∈ 𝒮 (6) 

where 𝑋𝑠
∗ and 𝑋−𝑠

∗  are optimal solutions to the social welfare maximization problem with and without 

the request of traveler 𝑠 and  𝑍𝑋𝑠
∗ and 𝑍𝑋−𝑠

∗  denote corresponding social welfare. 𝑣𝑠(𝑋𝑠
∗) is the valuation 

of traveler 𝑠 obtained under solution 𝑋𝑠
∗. Such payment rule prevents travelers from misreporting since 

the payment of traveler 𝑠 does not depend on his or her reported bidding price. 

 

2.2  Online auction mechanism with dynamic learning algorithm 
 

When setting the problem in online (dynamic) scenario, column generation algorithm and VCG-like 

payment rule will take exponential time with the increase of travelers, and thus cannot give immediate 

response. To this end, we propose a dynamic learning algorithm to solve the online resource allocation 
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problem, which is extended from a general version (Agrawal, et al., 2014). The idea is to use some initial 

inputs to solve a small-scale partial linear programing, obtain the optimal shadow (dual) price of 

mobility resources and treat that shadow price as a threshold price such that only travelers whose bids 

are above the threshold price will be accepted. The threshold price is updated continuously.  

We assume travelers’ arrival order follows the random permutation model, which lies between the worst 

case and a known distribution. We also need to know the total number of travelers a priori to decide the 

proper quantity of requests for learning threshold price. The competitive ratio of this algorithm is then 

theoretically proved. In general, we solve shadow price of each link from history bids and determine the 

allocation for future bids subject to capacity constraints. The payment of allocated traveler is the shadow 

price of the matched path, which equals to the summation of shadow prices of all link on that path. 

 

2.3  Online auction mechanism with greedy algorithm 
 

For comparison purpose, we propose another online algorithm based on the classic greedy algorithm. 

Greedy algorithm is a popular solution method to online (dynamic) resource allocation problems due its 

time efficiency and satisfactory competitive ratio (e.g., Zhang, et al., 2018). The basic idea is to rank 

travelers based on their bids and determine allocation according to this rank. Our ranking criteria is bid 

density 𝜔𝑠𝑘, defined to be the social welfare contributed by traveler 𝑠 if he or she is allocated to path 𝑘 

divided by his or her integrated travel requirements. 

In each time slot, the greedy algorithm first sorts requesting travelers according to their bid density in a 

non-ascending order. Then following this rank, the algorithm greedily processes travelers’ requests 

considering the capacity constraint. Travelers’ payment is calculated based on the critical bid density, 

defined to be the lower bound that the traveler’s bid density must exceed to be accepted in the auction. 

Since this critical bid density is independent from the traveler’s own bid information, such payment rule 

also guarantees truthfulness. 

 

3     RESULTS 
 

We demonstrate the performance of our proposed offline and online mechanisms using a numerical 

study on Sioux-Falls network as is shown in Figure 1. We assume there are three origins (𝑂1 to 𝑂3) and 

seven destinations (𝐷1 to 𝐷7) with two TSPs operating in this network: a ridesourcing company and an 

on-demand bus company.  

 

Figure 1 Sioux-Falls network 
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In the offline numerical experiment, we simulate 50 travelers requesting for mobility service from the 

MaaS platform. Our mechanism accepts 35 travelers’ requests, achieving a matching rate of 70%. 

Incentive compatibility and individual rationality are confirmed in this case. 

For the online case, we use the same network setting and set the total time span to be 120 minutes (which 

will be divided to 20 time slots for the greedy algorithm). We compare the performance of the proposed 

dynamic learning algorithm and the customized greedy algorithm to the first-arrive-first-serve (FAFS) 

matching rule, which simply assigns travelers based on their arriving order. The result obtained from 

the offline scenario is treated as benchmark to calculate two major metrics: ratio of social welfare (RSW) 

and ratio of matching rate (RMR). Both uniform and Poisson distributions are applied to generate the 

arrival order of travelers. Table 1 summarizes results of 50 generated instances with 800 travelers. As is 

shown, both greedy algorithm and dynamic learning algorithm can achieve high approximation ratios 

on social welfare and matching rate (above 0.85). In terms of RSW, dynamic learning algorithm 

performs the best in both uniform and Poisson distributions. Though it takes the longest computation 

time (CT), compared to the operation time span, it is acceptable for the online matching problem. 

Table 1 Performance of Online Solution Algorithms with 800 Travelers 

Arriving 

Distribution 
Measure Statistic FAFS 

Greedy 

Algorithm 

Dynamic Learning 

Algorithm 

Uniform 

RSW Mean (Std) 0.804(0.010) 0.875(0.012) 0.898(0.034) 

RMR Mean (Std) 0.929(0.008) 0.856(0.008) 0.922(0.041) 

CT Mean 266.757s 561.160s 979.782s 

Poisson 

RSW Mean (Std) 0.807(0.013) 0.874(0.011) 0.900(0.036) 

RMR Mean (Std) 0.927(0.009) 0.854(0.010) 0.925(0.038) 

CT Mean 267.263s 554.440s 987.616s 

 

We also tested other demand scenarios: 200, 400, 600, and 1000 travelers and found that no matter under 

which demand scenario, the dynamic learning algorithm always outperforms the other two algorithms, 

which demonstrates its robustness and effectiveness. 

 

4     DISCUSSION 
 

In this paper, we present an auction-based mobility resource allocation and pricing mechanism for the 

MaaS platform under transport network context. To provide seamless and personalized services for 

travelers, our proposed mechanisms allow travelers to report their multidimensional travel requirements 

(bidding price, travel time, preferred number of shared riders). All proposed offline and online 

mechanisms can ensure incentive compatibility and individual rationality of travelers, system efficiency 

and payment non-negativity of the platform. 
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