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1 INTRODUCTION

Most real-world problems in transportation aim to optimize time-dependent decision variables
that live in a dynamic, stochastic, and fast-paced environment. Such problems are frequently
characterized by a stochastic, nonconvex objective function which has an unknown analytical
form. Simulation-based optimization (SO) is a popular method that allows the coupled use
of analytical traffic models and complex stochastic urban traffic simulators to address various
real-world continuous transportation problems. One approach to tackle SO problems is known
as metamodel SO (Osorio & Bierlaire, 2013). In this approach, a limited number of simulation
observations is used to fit an analytical approximation of the simulation-based objective function
(i.e., a metamodel or surrogate model), which is less expensive to evaluate than the underlying
simulator. The fitted surrogate model is employed to perform optimization and derive new lo-
cal solutions for the decision variables. The performance of new local solutions is successively
evaluated by the simulator, leading to new observations that can be used to improve the fit of
the surrogate model. Given the computational burden of running simulations, the SO literature
has mostly considered stationary surrogate models (i.e. with no time-dependent decision vari-
ables and no dynamic information from the simulator). These models can be enhanced through
Bayesian optimization (BO, Tay & Osorio, 2021). This leads to the development of efficient
dynamic surrogate models that can be integrated into BO to solve dynamic SO problems.

In this work, we formulate a novel analytical and dynamic traffic model. We incorporate
the model within a BO framework and use it to tackle a large-scale dynamic SO transportation
problem. The proposed traffic model is both realistic and computationally efficient enough so that
the resulting BO framework preserves its efficiency and becomes suitable for high-dimensional
dynamic problems. This work extends the methodology of Tay & Osorio (2021), which combines
a time-independent traffic model with a BO framework, to time-dependent problems through
the formulation and use of a time-dependent traffic model. Preliminary results on small-scale
scenarios on a toy network from the literature show that incorporating the dynamic analytical
traffic model within BO leads to similar or better solutions than using stationary analytical
traffic models or no problem-specific information.
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2 METHODOLOGY

2.1 Dynamic traffic signal optimization problem

Consider a traffic signal control problem with a fixed cycle time ei for each link i ∈ L. The
problem optimizes the green splits of each periodic signal phase j ∈ P(i) during L time intervals,
i.e. xl,j . The goal is to determine a fixed time signal plan for each time interval such that the
expected travel time of vehicles that end their trips during the second half of the simulation
period is minimized (i.e., time interval l = ⌊(L/2) + 1⌋ to l = L). The problem is modeled as
follows:

min
x1,...,xL

f(x, z;p) ≡ 1

⌈L/2⌉

L∑
l=⌊(L/2)+1⌋

E[Fl(x, z;p)] (1)

s.t.
∑

j∈P(i)

xl,j =
ci − ei
ci

, ∀i ∈ I, l = 1, . . . , L, (2)

xl ≥ xLB, l = 1, . . . , L, (3)

where the objective function (1) is the weighted sum of the simulation-evaluated expected travel
time of vehicles during time interval l, i.e. Fl. This depends on the vector xl of green splits for
time interval l, the vector zl of endogenous link-level and network-level metrics for time interval
l, and the vector p of exogenous road network topology and fixed lane attributes. Constraints (2)
represent the cycle time constraints and ensure that the sum of all the green splits for a given
intersection add up to the proportion of available cycle time ci that can be optimized (i.e., not
fixed). Constraints (3) impose a lower bound on xl.

Assuming a limited amount of simulation observations, we choose BO as a suitable solution
approach (Jones et al., 1998). BO consists of two main components: (i) a model of the objective
function, and (ii) an acquisition function. One of the most popular choice of models of the
objective function is Gaussian Processes (GP). In this work, prior information is fed to the
GP model in the form of a dynamic analytical traffic network model. We refer the reader to
Section 3.2 of Tay & Osorio (2021) for a discussion of how this model is incorporated into the
GP model.

2.2 Dynamic analytical traffic network model

In this work, each link i ∈ L in the network is modeled as a reservoir of vehicles, with inflow
Qin

i,l from upstream links and outflow Qout
i,l from to downstream links. The term E[Fl(x, z;p)]

in objective function (1) is approximated by
∑L

l=1 αlf
A
l , where fA

l represents the expected time
vehicles spend in the network in time interval l. This is approximated using Little’s law (Little,
2011), as follows:

fA
l =

1
M

∑
i∈L

di
M−1∑
m=0

ρi,l(m∆t)

1
M

∑
i∈L

M−1∑
m=0

γi,l

(
1− ρi,l(m∆t)

ρmax

) =

∑
i∈L

di
M−1∑
m=0

ρi,l(m∆t)

∑
i∈L

M−1∑
m=0

γi,l

(
1− ρi,l(m∆t)

ρmax

) , (4)

where M represents the number of time steps in interval l, ∆t the time step length, ρmax the
maximum vehicle density, and di the length of link i. Furthermore, ρi,l and γi,l represent the
vehicle density and the external arrival rate to link i in interval l respectively.

Traffic dynamics are modeled through the following system of dynamical equations:

Qij,l(t) =
µi,l(t)

s
·QFD (ρi,l(t)) · 1(NDQ

i,l (t) > 0) · pij
(
1−

ρj,l(t)

ρmax

)
, (5)
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Figure 1 – Synthetic arterial network model.

Table 1 – Demand

OD Pair Demand (veh/h)

AB/BA 1050 30 min−−−−−→ 350
CD/DC 300 30 min−−−−−→ 900
EF 100
HG 100
JK 100

Qin
i,l(t) = γi,l

(
1−

ρj,l(t)

ρmax

)
+
∑
j

Qji,l(t), (6)

Qout
i,l (t) =

∑
j

Qij,l(t) +QFD (ρi,l(t)) · 1(NDQ
i,l (t) > 0) ·

1−
∑
j

pij

 , (7)

NDQ
i,l (t) = NDQ

i,l (t−∆t) +

[
Qin

i,l

(
t− tFF

i

(
1 +

ρi,l(t)

ρmax

))
−Qout

i,l (t)

]
·∆t, (8)

ρi,l ((t+∆t) = ρi,l(t) +
1

di

(
Qin

i,l(t)−Qout
i,l (t)

)
∆t. (9)

Equation (5) represents the fraction of the saturation flow rate s that can that can flow from
link i to link j at a given time t ∈ [0, (M − 1)∆t]. Here, QFD (ρi,l(t)) represents the maximum
outflow of link i described by the triangular fundamental diagram (Treiber & Kesting, 2013),
µi,l the service rate, and 1(NDQ

i,l (t) > 0) the indicator function implying that the outflow from
link i to link j can only be non-zero at time t if there are vehicles at the downstream end of link
i. Note that the outflow depends on the turning probabilities pij , as defined in Equation (7).
The inflows Qin

i,l are set in Equation (6) and the vehicle counter NDQ
i,l is defined in Equation (8),

where tFF
i represents the free-flow travel time of link i. Finally, the vehicle density of link i is

updated at each time step according to Equation (9). Note that the exogenous variables are s,
pij and ρmax, and µi,l. The latter depend on the signal plans that are being optimized.

3 NUMERICAL RESULTS

We implement a synthetic toy network consisting of 20 single-lane and 4 intersections, as depicted
in Figure 1 (Osorio & Yamani, 2017). The travel demand, shown in Table 1, is defined such that
vehicles only have straight paths. We optimize the signal plans for a 1-hour period, with a 15-
minute warm-up period. As such, the objective function is the expected travel time of vehicles
that end their trips in the last 30 minutes. The minimum green times are set to 4 seconds.

The performance of our Dynamic BO is benchmarked against: (i) Vanilla BO, using no
problem-specific prior information; and (ii) Stationary BO, using the stationary traffic model
in Tay & Osorio (2021). Scenarios are constructed by varying: (i) the level of demand, as a
percentage of the demand in Table 1; and (ii) the number of time intervals. Each BO method
is run 3 times for 3 different initial sets, each containing 4 randomly-drawn initial points to
fit the GP posteriors. We compute the objective function estimate by taking the mean of 4
simulations, with 2 additional simulations of the best solution at the end of each iteration. Each
BO run considers 26 optimization iterations. The relative expected optimization performances
of the BO methods are shown in Table 2. Each t-test considers whether Dynamic BO performs
better than Vanilla/Stationary BO for a given level of demand and number of time intervals.
The null hypothesis assumes that Dynamic BO obtained a mean performance that is worse than
or equal to the mean performance of Vanilla/Stationary BO. The t-tests with t-statistics smaller
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Table 2 – One-sided paired t-test results

Demand
Dynamic BO vs. Vanilla BO Dynamic BO vs. Stationary BO
L = 2 L = 4 L = 2 L = 4

t-stat p-value t-stat p-value t-stat p-value t-stat p-value
25% -1.107 0.150 0.391 0.647 -1.549 0.0800 -1.593 0.0749
50% -0.622 0.276 -0.597 0.283 0.0384 0.515 -4.078 1.77e-3
75% -1.445 0.0933 -0.408 0.347 0.0412 0.516 -4.082 1.76e-3
100% 0.468 0.674 -1.695 0.0642 -0.541 0.302 -2.726 0.0130
125% -2.100 0.0345 0.121 0.547 -0.581 0.289 -4.815 6.65e-4

(a) D=25%, L = 4 (b) D=50%, L = 4 (c) D=75%, L = 4

(d) D=100%, L = 4 (e) D=125%, L = 4

Figure 2 – Evolution of the expected objective function value

than the critical value (-1.397) have their null hypotheses rejected, and are displayed in bold in
Table 2. Note that, for L = 4, Dynamic BO is always better than Stationary BO on all demand
levels. Figure 2 shows the evolution of the best objective function value during the search. Note
that Dynamic BO is able to: (i) find good-quality solutions within a few iterations, and (ii) find
higher-quality solutions than Vanilla/Stationary BO by the end of the search.

The proposed strategy is currently being tested on a large-scale case study consisting of 698
roads, 2756 lanes, and 444 intersections. We expect to see more benefits to employing Dynamic
BO on this more complex network. Additional results obtained by the time of the conference
will be included in the presentation.
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