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1 Introduction

In this abstract, we investigate a generic variant of a 2-echelon routing problem, in which the
travel range of the primal vehicle (2"¢ echelon vehicle) is constrained by one or several capaci-
tated resources. By meeting at the same place and the same time with the supporting vehicle
(15¢ echelon vehicle) for a service in one of possible meeting points (MPs), those resources can
be replenished. The arising problem is characterized by particularly strong synchronization con-
straints for the two vehicles compared to the well-studied 2-echelon problem formulations. The
described problem setting emerges in many robot routing applications, notably, those including
a drone. In the latter case, the supporting vehicle may be a truck (Poikonen & Golden, 2020)
or an autonomous mobile replenishment station (Barrett et al., 2018). In possible applications,
the drone, constrained by its data storage capacity, collects data from scattered sensors (Jawhar
et al., 2014); or it delivers packages, the total weight of which can not exceed its payload (Poiko-
nen & Golden, 2020); or it visits several locations for monitoring in a long mission that surpasses
its flight range (Baik & Valenzuela, 2021). The current pandemics gave a further boost to the
deployment of drones, which now spray disinfectants in public spaces, pick up lab samples, and
deliver tests and medical supplies (UNICEF, 2021).

This paper reports on selected results of a larger research project on the described 2-echelon
routing problem, which we dubbed as the Drone Routing Problem with Energy replenishment
(DRP-E). The project is conducted by the authors and Nicola Mimmo (University of Bologna).

DRP-E is a generalization of several routing problems, such as the asymmetric traveling
salesman problem with replenishment arcs (Boland et al., 2000), the traveling salesperson problem
with hotel selection (Castro et al., 2015), and drone routing with stationary service stations
(Mathew et al., 2015). Contrary to the available literature on drone routing applications, such
as traveling salesman problems with drone (Agatz et al., 2018), DRP-E allows the drone to
visit multiple destinations between consecutive meetings for a service and permits both vehicles
to revisit arcs and MP’s. Furthermore, most studied drone routing scenarios consider simplified
energy consumption which is linear in the flight time. To the best of our knowledge, only Poikonen
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Figure 1 — An instance of DRP-E with one resource Figure 2 — Solutions for the instance of

(energy) and load-dependent energy consumption — Figure 1
Instance with |V = 3 and |V™| = 3. The tour must start in ws Top: Solution of the route-first-cluster-second approach
and end in w¢. The edge weights mark the distances, the (boxzed) RTS based on TSP path (ws,v1,v2,v3,wt). The tour
node wetights denote the package weight. The drone’s energy consists of 3 operations (ws,v1,wt), (wi,v2,w1) and
consumption depends on the flight time t and the current load (w1,vs,wt) of duration 12, 5 and 4 respectively. The
p: E(t,p) =t-(p+1). The drone’s energy capacity is cmaz = 55. total makespan is 21.
Bottom: Optimal  solution with 2  operations
(ws,v2,v1,wt), (we,v3,we) of duration 16 and 4,
respectively. The total makespan is 20, or 5% less than
in the solution abowve.

& Golden (2020) consider the problem setting described by DRP-E; the authors propose a route-
first-cluster-second construction heuristic, which they dub RTS. This state-of-the-art approach
first fixes the visiting order of the required destinations by the primal vehicle as a TSP-path,
then optimally selects and inserts MPs into this fixed sequence of destinations.

Similarly to RTS, many state-of-the art approaches for 2-echelon routing problems exploit the
separability of the routing decisions for both echelons. Those provide good starting solutions, but
are hard to improve by standard local search operators such as k-exchanges, swaps or randomized
neighbourhood searches, and usually show a large gap to optimality. This gap generally grows
with the addition of realistic problem features that strengthen the interdependence of both
vehicles. In our project, we propose a (polynomial approzimate) dynamic programming scheme
(PADP) that considers routing on both echelons simultaneously and is able to significantly
improve the initial solution, such as that of RTS, in reasonable running time. By dropping the
aggregation of the states in the state graph, PADP can be straightforwardly transformed into a
powerful exact dynamic programming approach.

2 Problem description

In DRP-E, the primary vehicle, which we call drone, has to visit a given set of destinations V.
Because of the limited capacity of one or several resources, the drone has to meet regularly with
the supporting vehicle (SV) in a set of potential meeting points (MP), denoted as V™, which
are safe spots on the SV’s road network for servicing the drone. A service usually implies a
battery swap, but may also refer to data transmissions to the data storage, package pick-ups, or
package deliveries. Both vehicles depart from the source ws € V™ and terminate their trip in the
target wy € V™. We call the walks of both vehicles in between two consecutive meetings for a
service at MP’s w and w’ as operation (OP) o = wsw', where s is the corresponding sequence of
destinations visited by the drone. The duration of an OP wsw’ is determined by the latest arrival
of the two vehicles at w’ (synchronization) and possibly involves waiting times. An OP is feasible
if the consumption of each resource » € R in the corresponding drone walk does not exceed its

respective capacity c;,,, € R. The resource consumption functions are generally complex and
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do not solely depend on the flight time. Each mission can be considered as a sequence of feasible
operations.
The objective of DRP-E is to minimize the makespan of the drone’s mission, by:

e sequencing the destination visits of the drone (2"? echelon)
e scheduling the services, which requires routing the SV through selected MP’s (15! echelon)

Figure 1 illustrates an instance of DRP-E with one resource (energy), in which the energy
drain depends on the load carried by the drone.

3 Contributions and computational results

The developed solution scheme PADP stands out from conventional heuristics in a number of
aspects which will be elaborated in detail during the presentation:

e The proposed PADP explores an exponential number of promising solutions in polynomial
time. This is due to a novel state-space aggregation procedure and an efficient encoding of
the states. The path exploration in the aggregated state graphs optimizes simultaneously
two polynomial subproblems of DRP-E. Given an input sequence of destinations, the first
subproblem compares similar missions, in which the visiting order of destinations verifies
the precedence constraints defined by Balas & Simonetti (2001). The second polynomial
subproblem takes the visiting order of destinations as given and optimizes, when and where
the services take place. The simultaneous solution of the mentioned subproblems by PADP
exploits synergies and significantly boosters the efficiency of the solution procedure.

e PADP can be straightforwardly adapted to many 2-echelon routing problem variants. This
flexibility arises from the design of PADP as a two-phase approach: The first phase con-
stitutes of |V™| weight-constrained one-to-many shortest path problems, which identify
feasible operations and eliminate dominated ones. The associated aggregated state-graph,
dubbed operations graph, accommodates all drone-related features and is searched by a label
setting algorithm. In the second phase, these pre-selected feasible operations are sequenced
to a best possible complete mission. The second phase accommodates the specificity of the
drone service and the characteristics of the SV. Note that the two-phase approach does not
separate the routing decisions for different echelons.

e The intensity of the aggregation in the state graphs of PADP is flexibly scaled by only
one parameter p, which controls the trade-off between the computational complexity and
accuracy. By dropping the aggregation, PADP — which is exponential in p, but polynomial
in the parameters of DRP-E — can be straightforwardly transformed to an eract dynamic
programming approach, which is the first exact solution approach for DRP-E so far.

We analytically estimate the size of the explored solution space and the time complexity of
PADP. Then, we evaluate the performance of PADP in extensive computational tests on various
structured artificial benchmark data sets. On the basis of different application scenarios, we
identify which factors reinforce or deteriorate the benefits of PADP compared to the state-
of-the-art heuristics. Table 1 shows an extract from the conducted experiments. Benchmark
instances are generated as described in Poikonen & Golden (2020) for a quadcopter operating in
a square area of length | (km) with zero package weights (NoPack) and package weights between
0 and 2.3 kg (Pack). PADP outperformed the state-of-the-art procedure RTS in almost all the
instances. In several cases the observed improvement exceeded 10%. Observe that RTS-solutions
cannot be easily improved even after hundreds of iterations with standard local search operators
neither applied to the route-first part of the solution, nor to the resulting mission, as we show in
our extensive experiments. Each instance with |[V¢| = 16 destinations and |[V™| = 16 MPs was
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solved by the exact algorithm based on PADP on a standard laptop with Intel i7-8565U, 1.80
GHz, 32GB RAM within a 10-minute time limit with an average runtime of 193 seconds.

We also examine real-life case studies, such as a search-and-rescue operation by a drone and
an autonomous robotic charging platform in the mountainous areas around lake Occhito, in
Southern Italy. In the mentioned case study, PADP outperformed the state-of-the-art solution
in disaster relief by 20%.

Table 1 — Performance of PADP

Setting Avg. (worst) gap | Avg. (best) improve- | # improvements
(V4 -|V™|-I-P) | to optimality (%) | - ment over RTS (%) over RTS
16-16-20-noPacks 2.1 (6.7) 1.4 (5.4) 5 (out of 10)
16-16-20-Packs 3.6 (9.7) 3.9 (7.5) 10 (out of 10)
25-25-25-noPacks - () 2.7 (7.6) 10 (out of 10)
25-25-25-Packs N 55 (13.8) 10 (out of 10)
50-25-25-noPacks - (=) 3.7 (8.6) 10 (out of 10)
50-25-25-Packs - () 58 (9.7) 10 (out of 10)
25-50-25-noPacks - (=) 2.1 (7.6) 10 (out of 10)
25-50-25-Packs - () 45 (8.4) 10 (out of 10)
Total ) 37 (13.8) 75 (out of 80)

4 Conclusion

We currently examine PADP in a number of further real-world case studies. As next steps, the
initial problem formulation as well as our analysis and the developed solution scheme PADP
should be extended to further cases relevant for practice. These include problem formulations
with uncertain flight times and multiple drones.
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