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1 INTRODUCTION

Autonomous Mobility-on-Demand (AMoD) systems constitute a viable alternative to mitigate
today’s mobility system’s externalities such as the rising traffic volume in urban areas and
transportation-related pollution. An AMoD system is a centrally controlled fleet of self-driving
vehicles serving on-demand ride requests. The central control of the MoD fleet allows the optimal
dispatching of vehicles to ride requests in an offline problem setting. The respective online prob-
lem setting causes the central control to dispatch vehicles to ride requests without information
about future ride requests, in hindsight leading to an optimality gap compared to the offline solu-
tion. To reduce this gap, some online approaches aim to anticipate future ride requests, e.g. via
sampling from known request distributions (Alonso-Mora et al. , 2017). However, the fleet con-
trol of sampling-based approaches is biased towards the predefined request distribution and tends
to misleading dispatching and rebalancing decisions in scenarios with inaccurate distributional
information.

We address this problem by proposing a structured-learning-based framework that allows
for prescriptive online dispatching learned from offline dispatching solutions. We derive this
framework in four steps: first, we show how to state the underlying dispatching problem in its
offline variant as a k-disjoint shortest paths problem, which allows to solve it in polynomial time.
Second, we introduce an extended problem representation for the online dispatching problem,
which allows to incorporate future ride requests in the graph representation of each online batch.
Third, we present a structured learning model (cf. Parmentier, 2021) which learns to predict the
arc weights for this extended dispatching graph such that the solution of the extended dispatching
problem incorporates prescriptive rebalancing decisions. This finally allows us to devise an online
dispatching algorithm for a centrally controlled MoD fleet that automatically adapts to different
scenarios. We benchmark our framework on the New York taxi data set and show that our
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approach outperforms existing MoD control approaches on scenarios with different numbers of
requests per time interval and different vehicles to request ratios.

2 PROBLEM SETTING

We consider an operator who has complete control over a MoD vehicle fleet V = {v1, ..., vn}
and dispatches vehicles to serve ride requests R = {r1, ..., rm}. Each ride request has a pickup
location, dropoff location, start time, arrival time, and a revenue defining the value for the
operator to fulfill this ride request. Then, the operator’s objective is to maximize its reward by
dispatching vehicles to ride requests. A ride request can represent a solitary ride or pooled rides
as we assume pooling decisions to be taken at an upper planning level. Accordingly a vehicle can
serve only one ride at a time, and a vehicle can fulfill two subsequent ride requests when they
are feasibly connectable in time and space.

Within this setting, we distinguish between an offline and an online problem variant. An
offline system covers the complete planning horizon and contains full information about all ride
requests. In the online problem, ride requests enter the system over time.

3 METHODOLOGY

Our algorithmic framework utilizes a novel offline imitation learning paradigm, see Figure 1.
The main rationale of this paradigm is to minimize the distance between an online solution and
the corresponding offline solution that could be obtained under full information. To reach this
goal, we use an algorithm Ω to transform the online instance Γon, which represents the rolling
horizon online batch, into an extended online instance ΓextOn, and use an encoding algorithm
ϕΘ to parameterize ΓextOn. The encoding algorithm ϕΘ learns the parameterization of ΓextOn

from precalculated offline solutions, which allows to incorporate information about possible future
system states and the value of corresponding (rebalancing) decisions. We then solve the extended
online problem instance ΓextOn using algorithm A and denote the solution with xextOn.

ϕΘ(Ω)

Alg + ML

A
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Online
problem

instance Γon

Extended online
problem instance

ΓextOn = ϕΘ(Ω(Γon))

Solution
xextOn = A(ϕΘ(Ω(Γon)))

Figure 1 – The offline imitation learning paradigm

The crucial part in the offline imitation learning paradigm is to learn parameter vector Θ such
that the solution xextOn = A(ϕΘ(Ω(Γon))) imitates an optimal offline solution xoff . Successfully
applying this paradigm requires (a) an offline control algorithm that finds an optimal solution to
the offline problem, (b) an online control algorithm that is compatible with the offline problem,
(c) the formulation of the online control problem as a structured-prediction problem, and (d) a
tractable structured-learning problem.
Offline control: We formulate our offline dispatching problem as a k-disjoint shortest paths
problem (cf. Schiffer et al. , 2021). We consider a weighted directed graph G = (V,A,W ) with a
set of vertices V , a set of arcs A and a set of weights W with a weight w ∈W for each arc a ∈ A.
The vertex set is V = {V ′ ∪ V v ∪ V r}, where V r denotes all ride requests, V v denotes the
initial positions of vehicles, and V ′ contains a dummy source and a dummy sink vertex. We then
construct this graph such that only ride request representing vertices that can be subsequently
served are connected by an arc. Further, we connect each vehicle vertex to all reachable ride
requests, the dummy source to all vehicle vertices and all ride request vertices to the dummy
sink, see Figure 2a. Finally, we associate the weight of a ride request vertex’s incoming arc with
the ride request’s negative reward. This allows us to obtain a solution to the offline problem
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Figure 2 – Comparison of offline, online, and extended online dispatching graph

in polynomial time by solving a k-disjoint shortest path problem on this graph structure; here,
each obtained path denotes a feasible vehicle schedule that is part of the optimal dispatching
strategy. We refer to this algorithm as A.
Online control: To obtain an online control problem that is compatible with its offline

counterpart’s algorithm, we use a re-optimization approach (cf. Bertsimas et al. , 2019) in a
rolling horizon fashion. Here, we construct a dispatching graph that contains only the ride
request vertices representing ride requests that enter the system in between two time steps, see
Figure 2b. To make this dispatching graph compatible with its offline counterpart, we extend it
with artificial vertices V r̂, see Figure 2c. To do so, the extension algorithm Ω splits the spatial
simulation area into square rebalancing cells of equal size and predicts a future ride demand
from a historical ride request distribution for every rebalancing cell. Each estimated future ride
demand is an artificial request vertex in the extended online batch graph representation and
constitutes a rebalancing location. Then, an offline solution with a vehicle fulfilling a future
ride request coincides with a vehicle driving to an artificial request vertex in the extended online
solution.
Structured-prediction problem: The encoder algorithm ϕΘ calculates the weights on the
graph representation of the extended online instance. The encoder calculates the weights wj

on arc aj via a linear combination of parameters Θ and features φ(aj ,Γ
extOn), e.g., location or

request information, describing this arc:

wj = 〈Θ|φ(aj ,Γ
extOn)〉 ∀j ∈ {1, ...,m}. (1)

This allows us to reformulate algorithm A as a minimization problem:

arg min
y∈Y

〈Θ|φ(y,ΓextOn)〉 with φ(y,ΓextOn) =
∑
aj∈y

φ(aj ,Γ
extOn). (2)

Structured-learning problem: We formulate a structured learning problem,

min
Θ

n∑
i=1

L(Θ; yi, xi), (3)

that learns parameters Θ such that the transformation from Γon to ΓextOn leads to a solu-
tion xextOn that minimizes the distance to xoff . We use a Fenchel-Young loss L(Θ; y, x) with
perturbations Z and excluded dual summand similar to Parmentier & t’Kindt (2021),

L(Θ; y, x) = EZ(min
y∈Y
〈Θ + Z|φ(y;x)〉)− 〈Θ|φ(y;x)〉, (4)

leading to a convex optimization problem that we solve with the BFGS algorithm.

4 PRELIMINARY RESULTS

We apply our algorithmic framework on a real-world case study in Manhattan using the New York
City taxi data set. We compare our structured learning based algorithm (SLBA) against two
benchmarks, a naive online approach, and a sampling online approach. The naive approach, does
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Figure 3 – The x-axis describes different scenarios (left: different densities of request distribu-
tions, right: different amount of vehicles over a fixed amount of requests). The y-axis shows the
performance indicator (upper row: absolute profit of different benchmarks, lower row: the relative
improvement of our learning approach to the benchmark approach.

not consider information about future ride requests, whereas the sampling approach incorporates
artificial ride requests, sampled from a given distribution, into the dispatching .

Figure 3 compares these benchmarks with our approach. Besides the stable and superior
performance of our approach, the results show the pitfalls of both benchmarks: the naive ap-
proach outperforms the sampling approach for scenarios with sparse request distributions, where
sampling likely triggers suboptimal rebalancing decisions, and for scenarios with a high vehicles
to requests ratio, where the vehicle fleet can always fulfill all ride requests without additional
rebalancing. The sampling approach outperforms the naive approach on scenarios with a high
request density, where sampling from the predefined distribution is a good indicator for future
requests, and in the case with a low ratio of vehicles to requests when wrong rebalancing deci-
sions are unlikely. Our SLBA performs better or equally good than both benchmarks across all
analyzed settings, which shows the superiority of our imitation learning paradigm, which allows
for effective prescriptive rebalancing in various system states.
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