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1 INTRODUCTION

The metro system is becoming an essential component of metropolises, with 182 cities in 56
countries operating metros, carrying an average a total of 168 million passengers per day in 2017
(UITP, 2018). The corresponding high-dimensional spatiotemporal mobility data allow us to
understand and solve crucial topics in traffic operation and management, such as mobility pattern
discovery, boarding/alighting passenger flow prediction, anomaly detection, to mention but a few.
However, it is challenging to capture the critical features and model the high-dimensional data
due to the complex dependence and interaction among space and time.

As the spatiotemporal mobility data can be naturally summarized into a multidimensional
array, i.e., matrix/tensor, many existing studies apply dimension reduction techniques, such
as principal component analysis (PCA) and matrix/tensor decomposition, to reveal the mobil-
ity patterns (Sun & Axhausen, 2016). The principle of these methods is projecting the high-
dimensional data into a low-dimensional space. They use observations instead of the dynamics of
the traffic system to analyze the latent patterns, which cannot capture the evolution of the mobil-
ity pattern. To fill the gap, we introduce an analytical framework to study the high-dimensional
human mobility data from a dynamic perspective. We apply the dynamic mode decomposition
(DMD) with Hankel structure on metro boarding passenger flow to uncover the dynamics of
mobility patterns and detect abnormal passenger flow by predicting future passenger flow.

The DMD is a data-driven technique that can simultaneously extract dynamically spa-
tial structures called dynamic modes with corresponding temporal evolution from observations
(Schmid, 2010). Though the DMD is applied in many domains, e.g., fluid mechanics, video
processing, and epidemiology, only a few studies have been published in the transportation area
nowadays (Avila & Mezić, 2020, Lehmberg et al., 2021). The DMD fails to formula the dynam-
ics of the traffic system because the spatial dimension is usually much less than the temporal
dimension, which cannot fully capture the system dynamics over the whole period. Therefore,
we use delay embedding (Hankelization) to enlarge the spatial dimension of the traffic data and
obtain meaningful dynamic modes. We apply hierarchical clustering to group the dynamic modes
at different timestamps to demonstrate the dynamics of mobility patterns. We also conduct a
long-term prediction experiment using extracted dynamic modes to evaluate the effectiveness of
the dynamic modes.
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2 METHODOLOGY

We denote the traffic variable (e.g., metro passenger flow) collected from N locations/stations
at timestamp t as xt ∈ RN , t = 1, · · · , T and the whole data set as X = [x1, · · · ,xT ] ∈ RN×T .
We assume the traffic system is a locally linear dynamical system so that xt+1 ≈ Axt, where
A ∈ RN×N is a dynamic matrix. The DMD aims to compute the leading eigendecomposition
of the best-fit linear operator A for all the traffic data X. However, the traffic data have rank
mismatch problem due to N ≪ T in practice; therefore, we construct a Hankel matrix H ∈
RNK×(N−K+1) to enlarge the data dimension. The Hankelization is a useful data augmentation
technique that recursively augment the data by repeating portions of them (Wang et al., 2021).
Given the delay embedding length K, we can obtain H from X by Hankelization operation H:

H(X) := H(k−1)N+1:kN, : = X :, t:N−K+t, for k = 1, . . . ,K, t = 1, . . . , T. (1)

Similarly, we can obtain ht+1 ≈ AHht, where ht ∈ RNK is the t column of H and AH ∈
RNK×NK is the dynamic matrix for H (Brunton et al., 2016). So the problem turns to be find
the leading eigenvectors and eigenvalues of AH relating the data H2 ≈ AHH1 (Tu et al., 2013):

AH = H2H
+
1 , (2)

where H1 := [h1, · · · ,hN−K ] ∈ RNK×(N−K) and H2 := [h2, · · · ,hN−K+1] ∈ RNK×(N−K) and
H+

1 is the Moore–Penrose inverse of H1.
The eigenvectors named dynamic modes reflect the spatially coherent, and the corresponding

eigenvalues determine the time dynamics, e.g., oscillation frequency and decay/growth rate, of
these modes. This is the backbone of the DMD. However, it is intractable to analyze AH directly
from Eq. (2) when the dimension is high. Instead, DMD discover the leading eigenvalues and
eigenvectors of AH from a rank-reduced matrix ÃH ∈ Rr×r by taking truncated SVD of H1 so
that H1 ≈ U rΣrV

T
r (Tu et al., 2013):

ÃH = UT
r AHU r = UT

r H2V rΣ
−1
r , (3)

where U ∈ RNK×r, Σ ∈ Rr×r, V ∈ R(N−K)×r, and r denotes the rank of ÃH . We use cumulative
eigenvalue percentage (CEP) defined as

∑r
i=1 λi/

∑min(NK,N−K)
i=1 λi to determine the rank r: the

first r eigenvalues are selected when the CEP reaches the threshold δ. It has been proved that
AH and ÃH have the same nonzero leading eigenvalues, so we can obtain the eigenvectors
ΦH ∈ CNK×r and eigenvalues λ ∈ Cr of AH by computing the eigenvalue decomposition of ÃH :

ÃHW = Wdiag(λ),

ΦH = H2V rΣ
−1
r W ,

(4)

where columns of W are eigenvectors of ÃH (Kutz et al., 2016). We reshape the dynamic modes
Φ to a tensor of size N × r×K and apply hierarchical clustering on frontal slices to discover the
mobility pattern under different timestamp k.

Given a time period length Tξ, we can reconstruct the Hankel traffic matrix H and predict
the future values by the dynamic modes and eigenvalues:

HDMD = Φdiag(b)Ψ, (5)

where b is the mode amplitudes computed as b = Φ+h1 and Ψ is a Vandermonde matrix of
eigenvalues denoted dynamic evolution, i.e., Ψi,t = λt−1

i , i = 1, . . . , r, t = 1, . . . , Tξ. It has to
be noted that the most eigenvalues will decay to zero due to |λi| < 1, which fails to predict
long-term future values. To address the problem, we set the norm of some eigenvalues to be 1
when |λi| ≈ 1. To the end, we use inverse Hankelization operator H−1 (Wang et al., 2021) to
transform the Hankel matrix HDMD back to XDMD.
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3 RESULTS

We apply Guangzhou metro boarding passenger flow collected by a fare collection system (pas-
sengers tap in/tap out at fare gantries) to evaluate our model. The data set includes 159 stations
and 3 weeks with 15-min resolution from 6:00 to 0:00, i.e., X ∈ R159×(72×21). We use the first
two weeks’ data as training data to discover the mobility patterns and the third week to evaluate
the prediction performance. We set the Hankel delay embedding length K as 504 (one week)
and the rank threshold δ as 0.9 to determine the number of dynamic modes.

As the dynamic modes describe the spatial coherent, we identify the mobility patterns by
hierarchical clustering. Figure 1a and 1b shows the pattern clustering results at 8:00 and 18:00
on Monday, respectively. We can observe from the figure: (1) most stations exhibit spatial
correlation regardless of time, such as neighbor stations are clustered as a group (brown cluster
and gray cluster); (2) some stations are clustered by area function, e.g., all the stations in the
blue cluster are transport hubs; (3) some stations have dynamic spatial correlation; for example,
stations in pink group are near the residential area in the morning, carrying passengers to work
in the morning, which merges to brown group in the afternoon.

(a) Mobility pattern clustering at 8:00. (b) Mobility pattern clustering at 18:00.

Figure 1 – Spatial mobility pattern clustering result under two peak hours. Each dot represents a
station and the same color denotes same group.

The comparison between boarding flow predictions and observations (ground-truth) is shown
in Figure 2a. Each dot in (a) represents one pair of observation and its corresponding prediction
in every 15 minutes at all the stations. The size of dots represents the station as a single station
(S) or transfer station (T), the color of dots denotes the absolute error. It can be seen that
most data pairs are predicted accurately (red color) except for several points (blue color). It
demonstrates that the extracted dynamic modes can reproduce the passenger flow. To figure
out the reason for inaccurate prediction, we select two points with significant prediction errors
(Point A and Point B) from 2a. Point A occurs at 21:45 Saturday at Station 15, and Point B at
22:15 Wednesday at Station 29. We plot the predictions (gray background) of these two stations
in Figure 2b. The same days of the week in the training data (white background) are shown in
the figure as the passenger flow exhibits strong periodicity. It can be seen that unexpected large
boarding flow causes the prediction error in both scenarios. In other words, Point A and Point
B can be regarded as anomalies detected by the model.
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(a) Observations and predictions for the third week
using the extracted leading dynamic modes.

(b) The prediction of Point A and Point B denoting
in (a).

Figure 2 – The prediction and anomaly detection results.

4 CONCLUSION

In this paper, we apply the dynamic mode decomposition with Hankel structure on metro board-
ing passenger flow to reveal the dynamics of mobility patterns. The Hankelization of mobility
data guarantees that the DMD successfully works on the metro system by enlarging the spatial
dimension and obtaining the dynamic modes simultaneously. Unlike other dimension reduction
methods, the DMD uncovers the dynamical characteristics of the system; therefore, we can ex-
ploit the underlying mobility pattern by separately grouping the dynamic modes of stations at
any timestamp. The dynamic correlation between stations can be used as prior information to
model the spatiotemporal data in future research. Another aspect where the framework shines is
that it can achieve long-term prediction and anomaly detection and deal with data heterogeneity.
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